Diagnostic tools and query

tuning examples in
PostgreSQL

o FROFESSIONAL

Agenda (1) POS gres

* PostgreSQL workload monitoring tools.

* List of extensions for tracking resource-intensive queries.

* Detecting resource consuming queries by using the pg_profile
module.

* Additional features provided by pgpro_stats and pgpro_pwr
modules.

° Tuning a query with the GROUP BY clause.

* Data search optimization based on a list of values presented as a
string.

Agenda (2) Pogzgres

* Usage of the LIMIT clause instead of the DISTINCT clause and
window functions.

° Subqueries optimization.

* Statement optimization with filtering on a computed column.

° Query tuning with a complex calculated expression.

° Extended statistics usage for correcting rows estimates in a
query plan.

° Extended statistics and IN operators.

* Excluding filtering conditions during query planning.

o FROFESSIONAL

PostgreSQL workload monitoring tools (1) POS QFeS

Mamonsu is a monitoring agent for collecting PostgreSQL and system
metrics and sending them to the Zabbix server:

Works with various operating systems / OSs
1 agent =1 database instance
Works with PostgreSQL version >= 9.5

Provides various metrics related to PostgreSQL activity

s)gres

PostgreSQL workload monitoring tools (2) POCE

Zabbix Agent 2 is another tool for collecting various metrics which is
available from Zabbix Server version 5.0:

1 agent can collect more than 95 metrics from multiple PostgreSQL
Instances.

Available from Zabbix standard repository.
Can work with PostgreSQL version 10 and higher.

An opportunity to write custom plugins by using Golang.

o FROFESSIONAL

PostgreSQL statistics connection Pos gres

mamonsu-demo: PostgreSQL connections

100
" AT
60
40
» ===
S e T T :
0

EEENEEE R E R E R EE E R R E R R E R R E R BN

e ARSI ASNRIRANRRaTA AR AERZRRRAT AR N0

2 a

o o

o [«]
fast min avg max
B PostgreSQL: number of active connections [avg] 1 1 2.24 36
B PostgreSQL: number of idle connections (avg) 10 0 2884 9
M PostgreSQL: number of idle in transaction connections [avg] 0 0 00317 1
I PostgreSQL: number of total connections [avg) 15 6 3513 9

W PostgreSQL: number of waiting connections [no data]

o FROFESSIONAL

PostgreSQL locks sampling Pos gres

mamonsu-demo: PostgreSQL locks sampling

30K |
25K
20K
15K
10K /
05K | / £
0 _—wﬂ
o ~ < = @ (=3 o~ bl e @ o ~ —ﬂ. 0 «© o o~ - o w© o o~ - w @ o “ . § w o r4l
= W wooow N e © o e © - L L | "o o ™Moo o~ N ™ m ® m m - - -1 - 3 W
o " o Eal o o o o o o o o o [~ o o (=] o o (=3 o o o o (=] o o o o o o O
- - - = - ~ o~ o ~ ~ o~ ~ ~ ~ ~ ™~ ~ ~ o~ ~ ~ ~ ~ “ o~ ~ ~ o~ ~ ~ ~ ~
& &
® ®
o o
last min avg max
W PostgreSQL locks: Read only queries [avg] 1 1 40219 1.28K
Bl PostgreSQL locks: SELECT FOR SHARE and SELECT FOR UPDATE [avg] 0 0 0 0
W PostgreSQL locks: Write queries favg] 0 0 82189 258K
B PostgreSQL locks: VACUUM, ANALYZE, CREATE INDEX CONCURRENTLY [avgl] 0 0 0 0
[l PostgreSQL locks: CREATE INDEX [avg] 0 0 18047 639
[0 PostgreSQL locks: Locks from application [avg] 0 0 0 0
[PostgreSQL locks: Locks from application or some operation on system catalogs [avg] 1 1 43113 18K
[PostgreSQL locks: ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL LOCK TABLE [avg] 0 0 0 0

List of extensions for tracking resource-intensive Pogzgreos

gueries

pg_stat_statements for analyzing which queries have the longest
execution time.

pg_stat_kcache for finding queries consuming the most CPU system and
user time.

auto_explain for finding query plans and parameters for further tuning.

pg_wait_sampling for collecting the history of wait events and waits
profiles.

plprofiler for creating performance profiles of PL/pgSQL functions and
stored procedures.

Detecting resource consuming queries by using the P nggrés
pg_profile module

pg_profile can be used for creating historic workload repository
containing various metrics such as:

» SQL Query statistics

« DML statistics

« Schema object statistics
* Vacuum-related statistics

Top SQL by execution time collected by the
pg_profile module

L/'O time (s) Execution times (ms))
Query ID Database | Exec (s) | % Total — Rows - Executions
Read |Write Mean Min Max StdErr
Adccad2749
568435.73 S5@.16 | 456357.14 @.88) 56251 18185, 344 5853.911 52967.823 | 314%.484 56251
[f237Fe62ee8206FF] data_db
16344d=544
= data db 275847 .89 24,27 @.46 56266 4888.336 4296.688 7265.277 | 458.831 L6266
[99e@aeceda2ceasTy] -
d2972odcd4 data db 98871.86 8.73 55416 1784.175 1322.458 F172.358 | 58%.637 55416
[3e2fc2lcdafaaba] ata_ ' ’ ’ ’ ’ ’
28d4asbbel
= = data db 6e91.75 .34 38757 1538. 352 1329.667 4263868 | 143.886 39528
[22253f2358531842] —
6aRdbe3I7Td
56345.51 4,97 .13 115a4 4897 .993 4382.192 7420.182(481.443 115a4
[2ceg4a2cdflcd9dec] data;jib
gedd21egoc
7312.75 &.65 B6732.43 796 9186.868 68154 . 682 17678.778 | 2227 .84 796
[4d144b46c513d2ba] data_db
4d21=89
28 R data db 7217.26 @.64 b63.68 798 9135.771 ble8.327 16583.876 | 2273.547 Toa
[65ac85552803d386] —
a722875b7d
B6826.51 &3.53 a.a82 121& 4958.59a 4343231 71e7.828 | 514.164 121&
[15ec7acac&f53adl] (hiﬁi_jib

o FROFESSIONAL

Pos}{gres

o FROFESSIONAL

Top SQL by shared blocks fetched by the pg_profile Pos}{gres

module

Query ID Database | blks fetched | %0 Total | Hits(%0) | Elapsed(s) | Rows | Executions
%mﬁﬁl data db | s7e232e1012| 39.99 85.16| 568435.7| 56251 56251
EE:HT::;;QWJ data_db | 48645632575| 18.68| 1@0.8@| 275047.1| 55266 56266
%ﬂzhﬂ data db | 4@@29581352| 18.48| 100.00 98871.9| 55416 55416
%31@12] data_db | 28552e@1@@9| 13.12 1@0.822 60491.7 | 38757 39528
% dseec] data_db 8310018767 3.82| 10@.80 56346.5| 11564 11504
%ﬁm] data_db 1737589525 a.se 75.72 3334.5| 1123 1123
% 2d3ba] data_db 1231564389 @.57 84.13 7312.7 796 796
%me&] data_db 1222288398 8.56 84.23 7217.3 790 799

o FROFESSIONAL

Top SQL by /O waiting time collected by the Posygres

pg_profile module

Reads Writes _

Query ID Database| IO0(s) R(s) | W(s)|%Total Shr Loc| Tmp | Shr [Loc| Tmp Elapsed(s) | Executions
%wﬁﬂ data_db |46357.139|46357.137|6.082| 83.28|129116834438 24 568435.7 56251
%ﬂilﬂﬁ] data_db | 1712.@99| 1712.013|0.077 3.8 84503980 5348 3338.5 1
%EE . data db | 1665.391| 1665.391 2.99| 421918322 3334.5 1123
%mﬂ data_db 1264.085 | 1264.005 2.27 11953338 3158.@ 181225
%M 2¢b] data_db | 11el.8e2| 11@l.3a2 1.98 5685417 1710.5 650053
%E cefa] data_db 862.443| 869.443 1.56| 228886445 1278.4 473
%3 43ba] data_db 673.434| 573.434 1.21 195397547 7312.7 796
ﬁg d306] data_db 663.598| 663.598 1.19| 192784558 7217.3 799

Detecting resource-consuming UPDATE Pogzgres

Based on the information provided by the pg_profile module, one of the
most resource-consuming queries has been found.

UPDATE contract.request data
SET status code = $1
, request date = $2
, response date = $3
, model version = $4
, contract id = $12
WHERE id = $13;

Why did it work so slow? We need the execution plan.

The execution plan and parameters have been received by using the
auto_explain module. To find the required string, Seq scan access method
was used which was the main reason of poor performance.

UPDATE ON request data (cost=0.00..1824166.48 ROWS=91465
width=9406)

On the application side, BigDecimal data type was used, the
corresponding type in PostgreSQL is numeric which is not the same as
bigint. After applying the changes, the query has begun to run for 20ms.

o FROFESSIONAL

Additional features provided by pgpro_stats and POS gres

pgpro_pwr modules

pgpro stats is used as a combination of pg_stat statements,
pg_stat_kcache and pg_wait_sampling modules (only for Postgres Pro
customers)

pgpro_pwr serves for gathering information from the pgpro_stats
module (only for Postgres Pro customers)

These modules allow to get lock statistics and query execution plans and
show them in separate sections of a pgpro_pwr report.

Wait statistics by database and top wait events

Wait statistics by database

Database | Wait event type | Waited (s) | %0 Total
db2 Client 287.3@| ©98.49
db2 IO 21.76 9.5@
db2 g 229.86| ©99.99
pg_profile | LWLock .93 8.1
pg_profile [* .03 8.81
Total 229.89

Top wait events

Database | Wait event type| Wait event |Waited (s) | %0 Total
db2 Client ClientWrite 287.38| 90.49
db2 10 BufFileWrite 15.30 6.68
db2 (o] BufFileRead 6.46| 2.82
pg_profile | LWLock BufferMapping @.e2 @.e1
pg_profile | LWLock LockManager @.01| @.00

o FROFESSIONAL

Pos}gres

Walit event types

All wait event types

Query ID Plan ID Database | Waited (s) | 2%cTotal Details
i1s5e@s2878b . .
[d1937b7ass7ec1b] ed4fad4adclissfeda | db2 185.11 45 .88 Client: 185.11
fcoessafeo . .

[ravzrdEadzerans1] 3e3faci6c4aste23 | db2 35.55 1&6.83 Client: 38.55
28397cabla . :
—[mec?mmszmzc] 4czes9bds7ze277 | db2 31.19 12.61 Client: 31.19
34464484982 . .
; e 111b8e468clazags | db2 21.85 @.54 Client: 21.85
©babcds300 223c@d3cea364d37 [db2 2a.62 o.88 I0: 28.562
[dza1f4elcFocesat] ") =" -
bb7E8211186 .
e B 33c65b8abBS2ldes | pg profile @.e3 a.a1 Lilock: @.83
IO wait event type

Query ID Plan ID Database | Waited (s) | %0 Total Details
@babcds388 BufFilekrites: 14.58
e £93e@d3c2a364d37 | db2 28.62 9,88
[d2E1lfdaelcfacedaf] BufFileRead: 6.84

LWLock wait event type

Query ID Plan ID Database | Waited (s) | %o Total Details
bh78911186 BufferMapping: @.82
- S3c6Eb8abB23ldes file 6.a3 a.el
[4212ces156Eafa08] PE_PIO LockManager: @.81

o FROFESSIONAL

Pos}{gres

o FROFESSIONAL

Query execution plans Pos gres

fc9edsered SELECT p.prod_id , p.category , p.title , p.actor , p.price , p.specisl , p.comson prod id FROM products p WHERE p.title LIKE $1 AND p.price BETWEEN $2 AND $3 ORDER BY p.prod id, p

Sort

Output: prod id, category, title, actor, price, special, common prod id
Sort Key: p.prod id, p.catsgory DESC, p.title DESC, p.sctor, p.price DESC, p.spacial, p.comson prod id
-> Bitmap Heap Scan on public.products p

Output: prod id, category, title, actor, price, special, common prod id

Filter: ({p.title ~ $1) MMD (p.price >= $4) AKD (p.price <= $5))

-» Bitmsp Index Scan on prog title cat prod id

Index Cond: ({p.title ~>=~ $6) AND (p.title ~¢~ $7))

Jc56fab3ea SELECT extname, extnamespace::regnamespace::name AS extnamespace, extversion FROM pg catalog.pg extsnsion WHERE extname IN ($1,52,83)

3e3f4c16c4887623

Seq Scan on pg_catalog.pg extension
18558adc14d44fa| Output: extname, ((extnamespace)::regnamespace)::name, extversion
Filter: (pg extension.zxtname = ANY ($4))

F47e5¢%87c select count($1) as pgoro_fxs from pg catalog.pg proc where proname IN ($2,33,54)

Aggregate
Output: count{$1)
a8fSbbbbedd25813| -> Index Only Scan using pg proc_proname args nsp index on pg catalog.pg proc
Output: pronaee, proargtypes, pronsmespacs
Index Cond: (pg_proc.proname = AKY ($5))

o FROFESSIONAL

Tuning a query with a GROUP BY clause Pos gres

In PostgreSQL, query
execution time was 93
seconds, so It needed
optimization.

To solve this problem, the
query execution plan was
required.

EXPLAIN (ANALYZE)
SELECT "d"."DOCUMENT ID"
, "gb"."Al"
, "gb"."A2"
FROM "dbo"."DOCUMENT" AS "d"
LEFT JOIN (SELECT "dd"."DOCUMENT ID“
, MIN("dd"."DATE BEG") AS "Al"
, SUM("dd"."SUMMA") AS "A2"
FROM "dbo"."DOCUMENT DEBIT" "dd"

WHERE "dd"."STORNO STATE" = 1
GROUP BY "dd"."DOCUMENT ID"
) " gb "
ON "gb"."DOCUMENT ID" = "d"."DOCUMENT ID"
WHERE "d"."DEAL ID" = 1259

ORDER BY "d"."DATE BEG"

Sort (COST=3434984.74..3434985.16 ROWS= width=32) (actual TIME=92706.912..92706.923
ROWS= loops=1)
Sort KEY: ""Extentl"".""DATE BEG"""
Sort Method: quicksort Memory: 34kB
-> Hash Right Join (cost=2546248.06..3434974.30 rows=169 width=32) (actual
time=57337.715..92706.636 rows=137 loops=1)
Hash Cond: (""Extent20"".""DOCUMENT ID"" = ""Extentl"".""DOCUMENT ID"")
-> HashAggregate (cost=2545629.74..3087954.23 rows=27437761 width=184)

(actual time=57336.820..90483.727 rows=27364695 loops=1)

Group Key: ""Extent20"".""DOCUMENT ID"""

Planned Partitions: 256 Batches: 257 Memory Usage: 16401kB Disk
Usage: 1293840kB

-> Hash (cost=616.21..616.21 rows=169 width=16) (actual
time=0.335..0.336 rows=137 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 15kB
-> Index Scan using ""IX FK DOCUMENT DEAL"" on ""DOCUMENT""
""Extentl"" (cost=0.44..616.21 rows=169 width=16) (actual time=0.068..0.291 rows=137
loops=1)

Index Cond: (""DEAL ID"" = 1259)

Planning Time: 0.502 ms
Execution Time: 92809.802 ms

o FROFESSIONAL

A suggestion for the query optimization with the Pos}{gres

GROUP BY clause

After filtering on the field ~— EXPLAIN (ANALYZE)

" » SELECT d."DOCUMENT ID"
DEAL_ID”, only 137 rows , MIN(dd."DATE BEG") AS "Al"

remained, so it was possible to . SUM(dd."SUMMA") AS "A2"

reduce the main dataset and then FROM "dbo"."DOCUMENT" d

calculate the aggregates for it. LEFT "dbo"."DOCUMENT DEBIT" dd

The execution time fOf thiS ON dd."DOCUMENT ID" = d."DOCUMENT ID"
AND dd."STORNO STATE" = 1

query has reduced to less than a WHERE d."DEAL ID" - 1259

second. GROUP BY d."DOCUMENT ID", d."DATE BEG"

ORDER BY d."DATE BEG";

CREATE UNIQUE INDEX doc deal id doc id date beg ux
ON "dbo"."DOCUMENT" ("DEAL ID", "DOCUMENT ID", "DATE BEG");

CREATE INDEX doc deb doc id storno state ix
ON "dbo"."DOCUMENT DEBIT" ("DOCUMENT ID", "STORNO STATE");

VACUUM (ANALYZE) "dbo"."DOCUMENT";

VACUUM (ANALYZE) "dbo"."DOCUMENT DEBIT";

o FROFESSIONAL

Data search optimization based on a list of values POS gres

presented as a string

It is required to find records in which the “status” field matches at least one
value from the list. In this case, it is presented as a string of values separated by
commas.

EXPLAIN (ANALYZE)
WITH statuses AS (
SELECT v.status::BIGINT
FROM regexp split to table('10,30,20', ',') AS
v (STATUS)
)
SELECT id
FROM reqg.lot 1
WHERE STATUS IN (SELECT STATUS FROM statuses s);

What will be the execution plan in this case?

At first, all rows from the lot table were extracted by using Seq Scan access method,
then they were filtered by Hash Join method. The execution plan is presented below:

Hash JOIN (COST=17.00..29888.66 ROWS= width=8) (actual TIME=
loops=1)
Hash Cond: (lot.status = (v.status) ::BIGINT)
->

-> Hash (COST=14.50..14.50 ROWS=200 width=32) (actual TIME=0.109..0.111 ROWS=3
loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB

-> HashAggregate (COST=12.50..14.50 ROWS=200 width=32) (actual TIME=0.093..0.096
ROWS=3 loops=1)
GROUP KEY: (v.status) ::BIGINT
-> FUNCTION Scan ON regexp split to table v (COST=0.00..10.00 ROWS=1000
width=32) (actual TIME=0.082..0.084 ROWS=3 loops=1)
Planning TIME: 1.232 ms
Execution TIME: 650.235 ms (10 ROWS)

EXPLAIN (ANALYZE
SELECT 1.id
FROM reqg.lot 1
WHERE 1.status IN ;

The IN operator is equivalent to searching through a list of values. What will be
the execution plan like in this case?

QUERY PLAN

INDEX Scan USING ixf lot status 1s active ON lot 1 (COST=0.42..221.04
ROWS=112 width=8) (actual TIME=0.310..5.448 ROWS=118 loops=1)

INDEX Cond: (status = ANY ('{10,20,30}'"::BIGINT[]))
Planning TIME: 1.334 ms
Execution TIME: 5.554 ms (4 ROWS)

We need a function, transforming a row into an array. For that PostgreSQL
function regexp_split_to_array is required.

EXPLAIN (ANALYZE
SELECT 1.id
FROM reqg.lot 1
WHERE 1.status ANY (regexp split to array('10,30,20'
', ') : :BIGINT ;

QUERY PLAN

INDEX Scan USING ixf lot status 1is active ON lot 1 (COST=0.42..221.04
ROWS=112 width=8) (actual TIME=0.310..5.448 ROWS=118 loops=1)

INDEX Cond: (status = ANY ('{10,20,30}"'"::BIGINT[]))
Planning TIME: 1.334 ms
Execution TIME: 5.554 ms (4 ROWS)

The original query execution time: 650.235 ms.

The current query execution time: 5.554 ms.

o FROFESSIONAL

Usage of the LIMIT clause instead of the DISTINCT Pos gres

clause and window functions

In PostgreSQL query’s execution time is 3.4 seconds, so optimization is
required.

To solve this issue, we need to know the execution plan for this statement.

EXPLAIN (ANALYZE)
SELECT 1.id
, 1i norm.*
FROM reqg.lot 1
JOIN lateral (SELECT DISTINCT 1li.lot id
, first value(li.id) OVER (partition BY li.lot id ORDER BY li.plan price DESC) AS id
FROM req.lot item 11
WHERE 1i.is active
AND 1li.lot id = 1.id

) 1i norm
ON 1i norm.lot id = 1.id
WHERE 1.status = ANY(regexp split to_array('2', ',')::bigint[]);

P o

QUERY PLAN

Nested Loop (cost=48.23..3639059.79 width=24) (actual TIME=0.276..3345.057
loops=1)
—-> INDEX Scan USING pk lot ON lot 1 (cost=0.42..45195.22 ROWS=74392 width=8) (actual
TIME=0.108..520.787 ROWS=74436 loops=1)
FILTER: (STATUS = ANY ('{2}'::BIGINT[]))
ROWS Removed BY FILTER: 206543

)
FILTER: (l.id = 1li norm.lot id)

-> HashAggregate (cost=47.80..48.02 ROWS=22 width=22) (actual TIME=0.036..0.036
ROWS=1 loops=74436)

GROUP KEY: li.lot id, first value(li.id) OVER (?)
-> WindowAgg (cost=47.25..47.69 ROWS=22 width=22) (actual TIME=0.029..0.033
ROWS=5 loops=74436)

-> Sort (cost=47.25..47.31 ROWS=22 width=22) (actual TIME=0.026..0.027 ROWS=5

loops=74436)

Sort KEY: li.plan price DESC

Sort Method: quicksort Memory: 25kB

—-> INDEX Scan USING ixf lot item lot id item id 1is active ON
lot item 1i (cost=0.38..46.21 ROWS=22 width=22) (actual TIME=0.007..0.021 ROWS=5 lo
ops=74436)
INDEX Cond: (lot id = 1.1id)

Planning TIME: 0.960 ms
Execution TIME: 3355.723 ms

Replacing DISTINCT and window function with the
LIMIT clause

For every lot object it is required to find out a corresponding row from the
lot_item table with the maximum plan_price. Therefore, the query can be
changed like this:

SELECT 1li.dic direction id
, li.plan year
, li.item id
FROM req.lot item 11
WHERE 1li.lot id = 1.id
AND 1i.is active
ORDER BY li.plan price DESC
LIMIT 1

To find a row by using Index Only Scan, we need to create an index with the
INCLUDE clause, where non-key fields will be stored. l.e, fields that are not
used in filtering/sorting operations.

CREATE INDEX 1li lot id plan price year dic direction id ix
ON reqg.lot item(lot id, is active, plan price, 1id)
INCLUDE (plan year, dic direction id, item id);

o FROFESSIONAL

Pos}gres

o FROFESSIONAL

The new query text after the DISTINCT and window Pos gres

function replacement

The new form of the query after DISTINCT and window function replacement is
presented below:

EXPLAIN (ANALYZE)
SELECT 1.id
, 11 norm.~*
FROM reqg.lot 1
JOIN LATERAL (SELECT li.dic direction id
, li.plan year
, li.item id
FROM req.lot item 11
WHERE 1i.lot id = 1.id
AND li.is active
ORDER BY li.plan price DESC
LIMIT 1
) 1i norm
ON (1 = 1)
WHERE 1.status = ANY (regexp split to array('2', ',')::BIGINT[]);

QUERY PLAN

Nested LOOP (COST=707.39..67460.04 ROWS=74392 width=32) (actual TIME=9.644..474.265
ROWS=72128 loops=1)
-> Bitmap Heap Scan ON lot 1 (COST=706.96..25918.87 ROWS=74392 width=8) (actual
TIME=9.577..80.787 ROWS=74436 loops=1)
RECHECK Cond: (status = ANY ('{2}'::BIGINTI[]))
Heap Blocks: exact=16830
-> Bitmap INDEX Scan ON ixf lot status 1s active (COST=0.00..688.36 ROWS=74392

width=0) (actual TIME=6.111..6.112 ROWS=74436 loops=1)
INDEX Cond: (status = ANY ('{2}'::BIGINT[]))
-> LIMIT (COST=0.43..0.54 ROWS=1 width=30) (actual TIME=0.005..0.005 ROWS=1 loops=74436)
—-> INDEX ONLY Scan BACKWARD USING 1i lot id plan price year dic direction id ix ON

lot item 1i (COST=0.43..2.87 ROWS=22 width=30) (actual TIME=0.004..0.004 ROWS=1 loo ps=74436)
INDEX Cond: ((lot id = 1.id) AND (is active = TRUE))
Heap Fetches: 0

Planning TIME: 0.821 ms

Execution TIME: 479.703 ms

The original query execution time: 3355.723 ms.

The current query execution time: 479 ms

o FROFESSIONAL

Subqueries optimization Posygres

It is required to get summary data for rows from the lot table. The original query version is
presented below, its execution time was almost 4 minutes. The main reason was sequential
scan on the purchase_result table while calculating values for the pur_result column.

EXPLAIN (ANALYZE)
SELECT 1.id
, (SELECT string agg(doc number, '; ‘)
FROM buy.purchase result
WHERE lot id = 1.id
) AS pur result
, (SELECT COUNT (*)
FROM buy.purchase result pr
WHERE pr.lot id = 1.id
AND pr.is active) AS pr_ count
, (SELECT string agg (DISTINCT sup.name full, ';')
FROM buy.purchase result pr
JOIN reqg.supplier sup
ON pr.supplier id = sup.id
AND sup.is active
WHERE pr.lot id = 1.id
AND pr.is active
) AS sup info
FROM reqg.lot 1
WHERE 1.organization id = 964;

QUERY PLAN

INDEX ONLY Scan USING 1t organization id ux ON lot 1 (cost=0.42..41848864.82 ROWS=7459 width=80) (actual
TIME=144.894..243809.902 ROWS=7495 loops=1)

INDEX Cond: (organization id = 964)
Heap Fetches: 0
SubPlan 1

-> Aggregate (cost=5594.87..5594.88 ROWS=1 width=32) (actual TIME=32.387..32.388 ROWS=1 loops=7495)

SubPlan 2

-> Aggregate (cost=2.41..2.42 ROWS=1 width=8) (actual TIME=0.044..0.044 ROWS=1 loops=7495)
—-> INDEX ONLY Scan USING ixf purchase result 1lot id ON purchase result pr (cost=0.38..2.40 ROWS=2
width=0) (actual TIME=0.032..0.033 ROWS=0 loops=7495)
INDEX Cond: (lot id = 1.id) Heap Fetches: 0
SubPlan 3
-> Aggregate (cost=13.19..13.20 ROWS=1 width=32) (actual TIME=0.064..0.064 ROWS=1 loops=7495)
-> Nested Loop (cost=0.67..13.18 ROWS=1 width=97) (actual TIME=0.018..0.022 ROWS=0 loops=7495)
-> INDEX Scan USING ixf purchase result lot id ON purchase result pr 1 (cost=0.38..4.57 ROWS=2
width=8) (actual TIME=0.005..0.006 ROWS=0 loops=7495)
INDEX Cond: (lot id = 1.id)
-> INDEX Scan USING pk supplier ON supplier sup (cost=0.29..4.31 ROWS=1 width=105) (actual
TIME=0.023..0.023 ROWS=1 loops=3419)
INDEX Cond: (id = pr_ l.supplier id)
FILTER: is active
ROWS Removed BY FILTER: O
Planning TIME: 5.320 ms
Execution TIME: 243821.165 ms

o FROFESSIONAL

Pos}gres

Building one subquery using the LATERAL clause

To optimize this statement, it is required to write one query which will relate to the main dataset with
the help of the LATERAL clause. We also need to build some additional indexes.

SELECT 1.id
, pr.doc_numbers
, Pr.pr_count
, pr.sup_info
FROM reqg.lot 1

LEFT JOIN LATERAL (SELECT string agg(pr.doc number, '; ') AS doc numbers
, COUNT (*) FILTER (WHERE pr.is active) AS pr count
string agg (DISTINCT sup.name full, ';') FILTER (WHERE pr.is active) AS sup_info

FROM buy.purchase result pr
LEFT JOIN reqg.supplier sup
ON sup.id = pr.supplier id
AND sup.is_active
WHERE pr.lot id = 1.id
) pr
ON (1 = 1)
WHERE 1.organization id = 964;

CREATE INDEX pr lot id doc number ix
ON buy.purchase result (lot id, is active, supplier id, doc number);

CREATE UNIQUE INDEX sup info ux ON req.supplier (id, is active, name full);

QUERY PLAN

Nested LOOP LEFT JOIN (COST=7.77..64162.05 ROWS=7461 width=80) (actual
TIME=1.479..135.591 ROWS=7495 loops=1)

—-> INDEX Scan USING lot dic cur id year status org id type correct last version ix ON
lot 1 (COST=0.42..9136.45 ROWS=7461 width=8) (actual TIME=1.416..21.601 ROWS=7495 LOOP
s=1)

INDEX Cond: (organization id = 964)

-> AGGREGATE (COST=7.35..7.36 ROWS=1 width=72) (actual TIME=0.014..0.014 ROWS=1

loops=7495)
-> Nested LOOP LEFT JOIN (COST=0.83..7.33 ROWS=2 width=104) (actual TIME=0.006
ROWS=0 loops=7495)
—-> INDEX ONLY Scan USING pr lot id doc number ix ON purchase result pr
(COST=0.42..2.46 ROWS=2 width=15) (actual TIME=0.004..0.004 ROWS=0 loops=7495)
INDEX Cond: (lot id = 1.id)
Heap Fetches: 0
—-> INDEX ONLY Scan USING sup info ux ON supplier sup (COST=0.41..2.43 ROWS=1
width=105) (actual TIME=0.005..0.005 ROWS=1 loops=3419)
INDEX Cond: ((id = pr.supplier id) AND (is active = TRUE))
Heap Fetches: 0
Planning TIME: 1.268 ms
Execution TIME: 136.788 ms

The original query execution time: 243821.165 ms

The current query execution time: 136.788 ms

o FROFESSIONAL

Statement optimization with filtering on a computed Pos}{gres

column

It is required to filter rows by using the year value extracted from the
date_delivery to column

EXPLAIN (ANALYZE)
SELECT 1.id
FROM reqg.lot 1

LEFT JOIN (SELECT 1.id
, EXTRACT (YEAR FROM 1.date delivery to) delivery

FROM reqg.lot 1

) date to
ON date to.id = 1.id
WHERE 1.organization 1id
AND date to.delivery >

964
2019;

What will be the execution plan in this case?

QUERY PLAN

Nested LOOP (COST=0.42..45711.14 ROWS=2486 width=8) (actual TIME=4.558..200.813 ROWS=4081
loops=1)
->

—-> INDEX Scan USING pk lot ON lot 1 1 (COST=0.42..2.39 ROWS=1 width=8) (actual
TIME=0.005..0.005 ROWS=1 loops=7495)
INDEX Cond: (id = 1.id)
Filter: (DATE_PART ('year'::TEXT, (date delivery to)::TIMESTAMP WITHOUT TIME ZONE) >=
'2019': :DOUBLE PRECISION)
ROWS Removed BY Filter: O
Planning TIME: 0.905 ms
Execution TIME: 201.428 ms

Is it possible to execute this statement without re-accessing the lot table?

o FROFESSIONAL

Replacing filtering on a calculated column Posygres

If the year >= 2019, then date delivery to >= °2019-01-01’:.date, which avoids re-

accessing the lot table
EXPLAIN (ANALYZE)
SELECT 1.id

FROM reqg.lot 1

WHERE 1.organization id = 964
AND 1.date delivery to >= make date (2019, 1, 1);

For improving query speed an additional index is required.

CREATE INDEX org id ddt ix ON req.lot (organization id,
date delivery to);

How will change the execution plan in this case?

QUERY PLAN

Bitmap Heap Scan ON lot 1 (COST=39.97..4879.92 ROWS=3078 width=8)

TIME=1.017..7.861 ROWS=4081 loops=1)
RECHECK Cond: ((organization id = 964) AND (date delivery to >= '2019-01-01'::DATE))
Heap Blocks: exact=2325

-> Bitmap INDEX Scan ON org id ddt ix (COST=0.00..39.20 ROWS=3078 width=0) (actual
TIME=0.650..0.651 ROWS=4081 loops=1)
INDEX Cond: ((organization id = 964) AND (date delivery to >= '2019-01-
01'::DATE))
Planning TIME: 0.332 ms
Execution TIME: 8.129 ms

The original query execution time: 201.428 ms

The current query execution time: 8.129 ms

o FROFESSIONAL

Query tuning with a calculated expression based on Pos gres

two columns from one table

In this case we need to find rows with a non-zero section, which is a calculated
expression based on two columns from one table.

EXPLAIN (ANALYZE)
WITH ds AS (
SELECT 1.id

, CASE
WHEN EXTRACT (YEAR FROM 1.date planned) = 2019 AND
EXTRACT (YEAR FROM 1.date delivery from) = 2019 THEN 1
WHEN EXTRACT (YEAR FROM 1.date planned) = 2019 AND
EXTRACT (YEAR FROM 1.date delivery from) > 2019 THEN 21
ELSE 0O
END AS razdel
FROM reqg.lot 1
WHERE 1.year < 2019
)
SELECT ~
FROM ds
WHERE razdel !'= 0;

QUERY PLAN

Bitmap Heap Scan ON lot 1 (cost=1712.96..39577.92 width=12)
loops=1)

Recheck Cond: (YEAR < 2019)

FILTER: (CASE WHEN ((date part('year'::text, (date planned)::TIMESTAMP WITHOUT TIME
zone) = '2019'::DOUBLE PRECISION) AND (date part('year'::text, (date delivery from)::times
tamp WITHOUT TIME zone) = '2019'::DOUBLE PRECISION)) THEN 1 WHEN ((date part('year'::text,
(date planned) : : TIMESTAMP WITHOUT TIME zone) = '2019'::DOUBLE PRECISION) AND
(date part('year'::text, (date delivery from) ::TIMESTAMP WITHOUT TIME zone) >
'2019': :DOUBLE PRECISION)) THEN 21 ELSE 0 END <> 0)

ROWS Removed BY FILTER: 178781

Heap Blocks: exact=20196

-> Bitmap INDEX Scan ON ix lot year 1is last version 1is active (cost=0.00..1668.12
ROWS=180227 width=0) (actual TIME=14.598..14.599 ROWS=180226 loops=1)
INDEX Cond: (YEAR < 2019)
Planning TIME: 4.737 ms
Execution TIME: 524.258 ms

There is a huge difference between estimated and actual row counts (179325 and 1445).
Is it possible to replace this calculated expression?

o FROFESSIONAL

Replacing the calculated column with two additional Pos}{gres

filter conditions

At any date from the segment 2019-01-01 and 2019-12-31 the year will be equal to
2019.

At any date >=2019-01-01 the year >= 2019.
So, it is possible to replace the calculated expression with new filtration clauses.

EXPLAIN (ANALYZE)
SELECT 1.id
FROM reqg.lot 1
WHERE 1.year < 2019
AND 1.date planned BETWEEN make date (2019, 1, 1) AND make date (2019,
12, 31)
AND 1.date delivery from >= make date (2019, 1, 1);

How will the estimated row counts change in this case?

QUERY PLAN

Bitmap Heap Scan ON lot 1 (cost=1670.43..29649.97 ROWS=9215 width=8) (actual
TIME=110.011..346.557 ROWS=1445 loops=1)

Recheck Cond: (YEAR < 2019)

FILTER: ((date planned >= '2019-01-01'::DATE) AND (date planned <= '2019-12-
31'::DATE) AND (date delivery from >= '2019-01-01'::DATE))

ROWS Removed BY FILTER: 178781

Heap Blocks: exact=20196
-> Bitmap INDEX Scan ON ix lot vyear 1s last version 1is active
(cost=0.00..1668.12 ROWS=180227 width=0) (actual TIME=16.352..16.353 ROWS=180226
loops=1)

INDEX Cond: (YEAR < 2019)
Planning TIME: 1.963 ms
Execution TIME: 346.833 ms

It is clear, that estimated row count has dramatically reduced from 179325 to 9215,
which means 19x faster.

What can be done to improve the estimates?

Extended statistics usage for correcting rows
estimates in a query plan

Let’s use the extended statistics of the mcv type to determine how often the combination of
the year and date_planned fields occurs. We also need to increase the columns statistics
target to improve their frequencies accuracy.

CREATE STATISTICS lot year date planned (mcv) ON YEAR, date planned FROM
reqg.lot;

ALTER TABLE reqg.lot ALTER COLUMN YEAR SET STATISTICS 1250;
ALTER TABLE reqg.lot ALTER COLUMN date planned SET STATISTICS 1250;

ANALYZE reqg.lot;
We also should build an additional index to speed up the query.

CREATE INDEX req dp ddf year ix ON req.lot (date planned,
date delivery from, YEAR) ;

o FROFESSIONAL

Pos}gres

QUERY PLAN

(cost=634.36..3059.41 ROWS=1397 width=8) (actual

Bitmap Heap Scan ON lot 1

TIME=5.102..7.942 ROWS=1445 loops=1)
((date planned >= '2019-01-01"'::DATE) AND (date planned <= '2019-

(date delivery from >= '2019-01-01"'::DATE) AND

Recheck Cond:
12-31"'::DATE) AND
Heap Blocks: exact=936
-> Bitmap INDEX Scan ON req dp ddf year ix (cost=0.00..634.01 ROWS=1397 width=0)
(actual TIME=4.970..4.970 ROWS=1445 loops=1)
INDEX Cond: ((date planned >= '2019-01-01"'::DATE) AND
'2019-12-31"'::DATE) AND (date delivery from >= '2019-01-01'::DATE) AND

2019))
Planning TIME: 3.181 ms

Execution TIME: 8.060 ms

(YEAR < 2019))

(date planned <=
(YEAR <

The original query execution time: 523.901 ms.

The current query execution time: 7.942 ms.
It is the least difference between estimated and actual row counts.

Extended statistics and IN clauses POS

SELECT r.case id
FROM ci case char r
WHERE r.char type cd = 'RETLTYPE'
AND r.char val IN ('0O', "2", '8'");
In PostgreSQL 12, the estimated row count was less than the actual number by
more than 100 times. Extended statistics didn’t help in this case, so the IN clause

was replaced on additional filter clauses united by OR operators.

SELECT r.case id
FROM ci case char r
WHERE r.char type cd = 'RETLTYPE'
AND (r.char val = '0'" OR r.char val = '2' OR r.char val = '8");

However, starting from PostgreSQL 13 this issue gets resolved by creating
extended statistics of the mcv type.

o FROFESSIONAL

gres

o FROFESSIONAL

Excluding filtering conditions during query planning Pos QFeS

In PostgreSQL, it is possible to exclude filtering conditions at the stage of query
planning. Let’s consider how the following construction will work based on the value of
the version_cond parameter.

WITH params AS NOT MATERIALIZED (
SELECT :version cond AS version cond
)
SELECT 1.id

FROM reqg.lot 1

JOIN params p

ON (1 = 1)

WHERE 1.year = 2019

AND ((p.version cond = 1 AND 1l.status = 50 AND 1l.type correct = 0) OR

(p.version cond = 2 AND l.status = 50 AND 1.is last version)

) ;

There is no need to filter rows by the is_last_version column, because it meets the
version_cond = 2 condition.

QUERY PLAN

Bitmap Heap Scan ON lot 1 (cost=212.32..15299.08 ROWS=14580 width=8) (actual

TIME=1.716..14.347 ROWS=18576 loops=1)
Recheck Cond: ((YEAR = 2019) AND (type correct = 0) AND (STATUS = 50))

Heap Blocks: exact=3262
-> Bitmap INDEX Scan ON year type cor status ix (cost=0.00..208.67 ROWS=14580

width=0) (actual TIME=1.243..1.244 ROWS=18576 loops=1)

INDEX Cond: ((YEAR = 2019) AND (type correct = AND (STATUS = 50))
Planning TIME: 0.364 ms
Execution TIME: 15.251 ms

There is no need to filter rows by the type correct column, since it meets the
version_cond = 1 condition.

QUERY PLAN

Bitmap Heap Scan ON lot 1 (cost=212.32..15262.63 ROWS=14580 width=8) (actual
TIME=3.067..36.650 ROWS=18576 loops=1)

Recheck Cond: ((YEAR = 2019) AND (STATUS = 50))

FILTER: is last version

Heap Blocks: exact=3262
-> Bitmap INDEX Scan ON year type cor 1lv ix (cost=0.00..208.67 ROWS=14580
width=0) (actual TIME=2.612..2.612 ROWS=18576 loops=1)
INDEX Cond: ((YEAR = 2019) AND (is last version = TRUE) AND (STATUS = 50))
Planning TIME: 3.586 ms
Execution TIME: 37.574 ms

If version_cond = 3, then an empty dataset will be returned, since 3 is not equal to 1 and 2.
All of this happens during the query planning stage.

QUERY PLAN

RESULT (cost=0.00..0.00 ROWS=0 width=0) (actual TIME=0.002..0.002 ROWS=0 loops=1)

One-TIME FILTER: FALSE
Planning TIME: 0.429 ms
Execution TIME: 0.034 ms

In PostgreSQL, it is possible to exclude certain query conditions during query planning,
which allows developer to write less dynamic SQL code.

o FROFESSIONAL

Pos}gres

pg_stat_statements module.
https://www.postgresql.org/docs/13/pgstatstatements.html

¢

pg_stat_kcache module. https://github.com/powa-team/pg_stat kcache

pg_wait_sampling module. https://github.com/postarespro/pg_wait_sampling

auto_explain module. https://www.postgresgl.org/docs/13/auto-explain.html

pgpro_stats module. https://postgrespro.com/docs/enterprise/12/pgpro-stats

pg_profile module. https://github.com/zubkov-andrei/pg_profile

pgpro_pwr module. https://postgrespro.com/docs/enterprise/12/pgpro-pwr

mamonsu. https://github.com/postarespro/mamonsu

¢ ¢ ¢ 4 4+ ¢ 4

zabbix agent 2
https://qithub.com/zabbix/zabbix/tree/master/src/qo/cmd/zabbix agent2

https://www.postgresql.org/docs/13/pgstatstatements.html
https://github.com/powa-team/pg_stat_kcache
https://github.com/postgrespro/pg_wait_sampling
https://www.postgresql.org/docs/13/auto-explain.html
https://postgrespro.com/docs/enterprise/12/pgpro-stats
https://github.com/zubkov-andrei/pg_profile
https://postgrespro.com/docs/enterprise/12/pgpro-pwr
https://github.com/postgrespro/mamonsu
https://github.com/zabbix/zabbix

Postgres Professional

p.petrov@postgrespro.com
info@postgrespro.com

http://postgrespro.com/

