
Diagnostic tools and query
tuning examples in
PostgreSQL

postgrespro.com
Peter Petrov,
Senior DBA,
June 17, 2021

2

Agenda (1)

• PostgreSQL workload monitoring tools.

• List of extensions for tracking resource-intensive queries.

• Detecting resource consuming queries by using the pg_profile

module.

• Additional features provided by pgpro_stats and pgpro_pwr

modules.

• Tuning a query with the GROUP BY clause.

• Data search optimization based on a list of values presented as a

string.

3

Agenda (2)

• Usage of the LIMIT clause instead of the DISTINCT clause and

window functions.

• Subqueries optimization.

• Statement optimization with filtering on a computed column.

• Query tuning with a complex calculated expression.

• Extended statistics usage for correcting rows estimates in a

query plan.

• Extended statistics and IN operators.

• Excluding filtering conditions during query planning.

4

PostgreSQL workload monitoring tools (1)

Mamonsu is a monitoring agent for collecting PostgreSQL and system

metrics and sending them to the Zabbix server:

• Works with various operating systems / OSs

• 1 agent = 1 database instance

• Works with PostgreSQL version >= 9.5

• Provides various metrics related to PostgreSQL activity

5

PostgreSQL workload monitoring tools (2)

Zabbix Agent 2 is another tool for collecting various metrics which is

available from Zabbix Server version 5.0:

• 1 agent can collect more than 95 metrics from multiple PostgreSQL

instances.

• Available from Zabbix standard repository.

• Can work with PostgreSQL version 10 and higher.

• An opportunity to write custom plugins by using Golang.

6

PostgreSQL statistics connection

7

PostgreSQL locks sampling

8

List of extensions for tracking resource-intensive

queries

pg_stat_statements for analyzing which queries have the longest

execution time.

pg_stat_kcache for finding queries consuming the most CPU system and

user time.

auto_explain for finding query plans and parameters for further tuning.

pg_wait_sampling for collecting the history of wait events and waits

profiles.

plprofiler for creating performance profiles of PL/pgSQL functions and

stored procedures.

9

Detecting resource consuming queries by using the
pg_profile module

pg_profile can be used for creating historic workload repository

containing various metrics such as:

• SQL Query statistics

• DML statistics

• Schema object statistics

• Vacuum-related statistics

10

Top SQL by execution time collected by the
pg_profile module

11

Top SQL by shared blocks fetched by the pg_profile
module

12

Top SQL by I/O waiting time collected by the
pg_profile module

13

Detecting resource-consuming UPDATE

UPDATE contract.request_data

SET status_code = $1

, request_date = $2

, response_date = $3

, model_version = $4

, contract_id = $12

WHERE id = $13;

Based on the information provided by the pg_profile module, one of the

most resource-consuming queries has been found.

Why did it work so slow? We need the execution plan.

14

The execution plan for resource-consuming
UPDATE statement

UPDATE ON request_data (cost=0.00..1824166.48 ROWS=91465

width=946)

-> Seq Scan ON request_data (cost=0.00..1824166.48

ROWS=91465 width=946)

FILTER: ((id)::NUMERIC = '18310725'::NUMERIC)

The execution plan and parameters have been received by using the

auto_explain module. To find the required string, Seq scan access method

was used which was the main reason of poor performance.

On the application side, BigDecimal data type was used, the

corresponding type in PostgreSQL is numeric which is not the same as

bigint. After applying the changes, the query has begun to run for 20ms.

15

Additional features provided by pgpro_stats and
pgpro_pwr modules

pgpro_stats is used as a combination of pg_stat_statements,

pg_stat_kcache and pg_wait_sampling modules (only for Postgres Pro

customers)

pgpro_pwr serves for gathering information from the pgpro_stats

module (only for Postgres Pro customers)

These modules allow to get lock statistics and query execution plans and

show them in separate sections of a pgpro_pwr report.

16

Wait statistics by database and top wait events

17

Wait event types

18

Query execution plans

19

Tuning a query with a GROUP BY clause

In PostgreSQL, query

execution time was 93

seconds, so it needed

optimization.

To solve this problem, the

query execution plan was

required.

EXPLAIN (ANALYZE)

SELECT "d"."DOCUMENT_ID"

, "gb"."A1"

, "gb"."A2"

FROM "dbo"."DOCUMENT" AS "d"

LEFT JOIN (SELECT "dd"."DOCUMENT_ID“

, MIN("dd"."DATE_BEG") AS "A1"

, SUM("dd"."SUMMA") AS "A2"

FROM "dbo"."DOCUMENT_DEBIT" "dd"

WHERE "dd"."STORNO_STATE" = 1

GROUP BY "dd"."DOCUMENT_ID"

) "gb"

ON "gb"."DOCUMENT_ID" = "d"."DOCUMENT_ID"

WHERE "d"."DEAL_ID" = 1259

ORDER BY "d"."DATE_BEG"

20

The execution plan for the query with the GROUP
BY clause

Sort (COST=3434984.74..3434985.16 ROWS=169 width=32) (actual TIME=92706.912..92706.923

ROWS=137 loops=1)

Sort KEY: ""Extent1"".""DATE_BEG"""

Sort Method: quicksort Memory: 34kB

-> Hash Right Join (cost=2546248.06..3434974.30 rows=169 width=32) (actual

time=57337.715..92706.636 rows=137 loops=1)

Hash Cond: (""Extent20"".""DOCUMENT_ID"" = ""Extent1"".""DOCUMENT_ID"")

-> HashAggregate (cost=2545629.74..3087954.23 rows=27437761 width=184)

(actual time=57336.820..90483.727 rows=27364695 loops=1)

Group Key: ""Extent20"".""DOCUMENT_ID"""

Planned Partitions: 256 Batches: 257 Memory Usage: 16401kB Disk

Usage: 1293840kB

-> Seq Scan ON ""DOCUMENT_DEBIT"" ""Extent20""

(COST=0.00..787898.18 ROWS=27437761 width=16) (actual TIME=0.014..38584.091

ROWS=27419629 loops=1)"

Filter: (""STORNO_STATE"" = 1)" ROWS Removed BY

Filter: 117265"

-> Hash (cost=616.21..616.21 rows=169 width=16) (actual

time=0.335..0.336 rows=137 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 15kB

-> Index Scan using ""IX_FK_DOCUMENT_DEAL"" on ""DOCUMENT""

""Extent1"" (cost=0.44..616.21 rows=169 width=16) (actual time=0.068..0.291 rows=137

loops=1)

Index Cond: (""DEAL_ID"" = 1259)

Planning Time: 0.502 ms

Execution Time: 92809.802 ms

21

A suggestion for the query optimization with the
GROUP BY clause

EXPLAIN (ANALYZE)

SELECT d."DOCUMENT_ID"

, MIN(dd."DATE_BEG") AS "A1"

, SUM(dd."SUMMA") AS "A2"

FROM "dbo"."DOCUMENT" d

LEFT "dbo"."DOCUMENT_DEBIT" dd

ON dd."DOCUMENT_ID" = d."DOCUMENT_ID"

AND dd."STORNO_STATE" = 1

WHERE d."DEAL_ID" = 1259

GROUP BY d."DOCUMENT_ID", d."DATE_BEG"

ORDER BY d."DATE_BEG";

After filtering on the field

“DEAL_ID”, only 137 rows

remained, so it was possible to
reduce the main dataset and then

calculate the aggregates for it.

The execution time for this

query has reduced to less than a
second.

CREATE UNIQUE INDEX doc_deal_id_doc_id_date_beg_ux

ON "dbo"."DOCUMENT"("DEAL_ID", "DOCUMENT_ID", "DATE_BEG");

CREATE INDEX doc_deb_doc_id_storno_state_ix

ON "dbo"."DOCUMENT_DEBIT"("DOCUMENT_ID", "STORNO_STATE");

VACUUM (ANALYZE) "dbo"."DOCUMENT";

VACUUM (ANALYZE) "dbo"."DOCUMENT_DEBIT";

22

Data search optimization based on a list of values
presented as a string

It is required to find records in which the “status” field matches at least one

value from the list. In this case, it is presented as a string of values separated by

commas.

EXPLAIN (ANALYZE)

WITH statuses AS (

SELECT v.status::BIGINT

FROM regexp_split_to_table('10,30,20', ',') AS

v(STATUS)

)

SELECT id

FROM req.lot l

WHERE STATUS IN (SELECT STATUS FROM statuses s);

What will be the execution plan in this case?

23

The original query execution plan

Hash JOIN (COST=17.00..29888.66 ROWS=140490 width=8) (actual TIME=41.228..649.965 ROWS=118

loops=1)

Hash Cond: (lot.status = (v.status)::BIGINT)

-> Seq Scan ON lot (COST=0.00..27184.79 ROWS=280979 width=16) (actual

TIME=0.058..397.005 ROWS=280979 loops=1)

-> Hash (COST=14.50..14.50 ROWS=200 width=32) (actual TIME=0.109..0.111 ROWS=3

loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 9kB

-> HashAggregate (COST=12.50..14.50 ROWS=200 width=32) (actual TIME=0.093..0.096

ROWS=3 loops=1)

GROUP KEY: (v.status)::BIGINT

-> FUNCTION Scan ON regexp_split_to_table v (COST=0.00..10.00 ROWS=1000

width=32) (actual TIME=0.082..0.084 ROWS=3 loops=1)

Planning TIME: 1.232 ms

Execution TIME: 650.235 ms (10 ROWS)

At first, all rows from the lot table were extracted by using Seq Scan access method,

then they were filtered by Hash Join method. The execution plan is presented below:

24

The execution plan for the query with the IN
operator

EXPLAIN (ANALYZE)

SELECT l.id

FROM req.lot l

WHERE l.status IN (10, 20, 30);

QUERY PLAN

--

INDEX Scan USING ixf__lot__status__is_active ON lot l (COST=0.42..221.04

ROWS=112 width=8) (actual TIME=0.310..5.448 ROWS=118 loops=1)

INDEX Cond: (status = ANY ('{10,20,30}'::BIGINT[]))

Planning TIME: 1.334 ms

Execution TIME: 5.554 ms (4 ROWS)

The IN operator is equivalent to searching through a list of values. What will be

the execution plan like in this case?

25

A query with regexp_split_to_array

We need a function, transforming a row into an array. For that PostgreSQL

function regexp_split_to_array is required.

EXPLAIN (ANALYZE)

SELECT l.id

FROM req.lot l

WHERE l.status = ANY(regexp_split_to_array('10,30,20',

',')::BIGINT[]);

QUERY PLAN

--

INDEX Scan USING ixf__lot__status__is_active ON lot l (COST=0.42..221.04

ROWS=112 width=8) (actual TIME=0.310..5.448 ROWS=118 loops=1)

INDEX Cond: (status = ANY ('{10,20,30}'::BIGINT[]))

Planning TIME: 1.334 ms

Execution TIME: 5.554 ms (4 ROWS)

The original query execution time: 650.235 ms.

The current query execution time: 5.554 ms.

26

Usage of the LIMIT clause instead of the DISTINCT

clause and window functions

In PostgreSQL query’s execution time is 3.4 seconds, so optimization is

required.

To solve this issue, we need to know the execution plan for this statement.

EXPLAIN (ANALYZE)

SELECT l.id

, li_norm.*

FROM req.lot l

JOIN lateral (SELECT DISTINCT li.lot_id

, first_value(li.id) OVER (partition BY li.lot_id ORDER BY li.plan_price DESC) AS id

FROM req.lot_item li

WHERE li.is_active

AND li.lot_id = l.id

) li_norm

ON li_norm.lot_id = l.id

WHERE l.status = ANY(regexp_split_to_array('2', ',')::bigint[]);

27

The execution plan of the query with DISTINCT and
window function

QUERY PLAN

--

Nested Loop (cost=48.23..3639059.79 ROWS=6 width=24) (actual TIME=0.276..3345.057

ROWS=72128 loops=1)

-> INDEX Scan USING pk__lot ON lot l (cost=0.42..45195.22 ROWS=74392 width=8) (actual

TIME=0.108..520.787 ROWS=74436 loops=1)

FILTER: (STATUS = ANY ('{2}'::BIGINT[]))

ROWS Removed BY FILTER: 206543

-> Subquery Scan ON li_norm (cost=47.80..48.30 ROWS=1 width=16) (actual TIME=0.037..0.037

ROWS=1 loops=74436)

FILTER: (l.id = li_norm.lot_id)

-> HashAggregate (cost=47.80..48.02 ROWS=22 width=22) (actual TIME=0.036..0.036

ROWS=1 loops=74436)

GROUP KEY: li.lot_id, first_value(li.id) OVER (?)

-> WindowAgg (cost=47.25..47.69 ROWS=22 width=22) (actual TIME=0.029..0.033

ROWS=5 loops=74436)

-> Sort (cost=47.25..47.31 ROWS=22 width=22) (actual TIME=0.026..0.027 ROWS=5

loops=74436)

Sort KEY: li.plan_price DESC

Sort Method: quicksort Memory: 25kB

-> INDEX Scan USING ixf__lot_item__lot_id__item_id__is_active ON

lot_item li (cost=0.38..46.21 ROWS=22 width=22) (actual TIME=0.007..0.021 ROWS=5 lo

ops=74436)

INDEX Cond: (lot_id = l.id)

Planning TIME: 0.960 ms

Execution TIME: 3355.723 ms

28

Replacing DISTINCT and window function with the
LIMIT clause

For every lot object it is required to find out a corresponding row from the

lot_item table with the maximum plan_price. Therefore, the query can be

changed like this:

SELECT li.dic_direction_id

, li.plan_year

, li.item_id

FROM req.lot_item li

WHERE li.lot_id = l.id

AND li.is_active

ORDER BY li.plan_price DESC

LIMIT 1

CREATE INDEX li_lot_id_plan_price_year_dic_direction_id_ix

ON req.lot_item(lot_id, is_active, plan_price, id)

INCLUDE(plan_year, dic_direction_id, item_id);

To find a row by using Index Only Scan, we need to create an index with the

INCLUDE clause, where non-key fields will be stored. I.e, fields that are not

used in filtering/sorting operations.

29

The new query text after the DISTINCT and window
function replacement

EXPLAIN (ANALYZE)

SELECT l.id

, li_norm.*

FROM req.lot l

JOIN LATERAL (SELECT li.dic_direction_id

, li.plan_year

, li.item_id

FROM req.lot_item li

WHERE li.lot_id = l.id

AND li.is_active

ORDER BY li.plan_price DESC

LIMIT 1

) li_norm

ON (1 = 1)

WHERE l.status = ANY(regexp_split_to_array('2', ',')::BIGINT[]);

The new form of the query after DISTINCT and window function replacement is

presented below:

30

The execution plan of the query with the LIMIT
clause

QUERY PLAN

Nested LOOP (COST=707.39..67460.04 ROWS=74392 width=32) (actual TIME=9.644..474.265

ROWS=72128 loops=1)

-> Bitmap Heap Scan ON lot l (COST=706.96..25918.87 ROWS=74392 width=8) (actual

TIME=9.577..80.787 ROWS=74436 loops=1)

RECHECK Cond: (status = ANY ('{2}'::BIGINT[]))

Heap Blocks: exact=16830

-> Bitmap INDEX Scan ON ixf__lot__status__is_active (COST=0.00..688.36 ROWS=74392

width=0) (actual TIME=6.111..6.112 ROWS=74436 loops=1)

INDEX Cond: (status = ANY ('{2}'::BIGINT[]))

-> LIMIT (COST=0.43..0.54 ROWS=1 width=30) (actual TIME=0.005..0.005 ROWS=1 loops=74436)

-> INDEX ONLY Scan BACKWARD USING li_lot_id_plan_price_year_dic_direction_id_ix ON

lot_item li (COST=0.43..2.87 ROWS=22 width=30) (actual TIME=0.004..0.004 ROWS=1 loo ps=74436)

INDEX Cond: ((lot_id = l.id) AND (is_active = TRUE))

Heap Fetches: 0

Planning TIME: 0.821 ms

Execution TIME: 479.703 ms

The original query execution time: 3355.723 ms.

The current query execution time: 479 ms

31

Subqueries optimization

It is required to get summary data for rows from the lot table. The original query version is

presented below, its execution time was almost 4 minutes. The main reason was sequential

scan on the purchase_result table while calculating values for the pur_result column.

EXPLAIN (ANALYZE)

SELECT l.id

, (SELECT string_agg(doc_number, '; ‘)

FROM buy.purchase_result

WHERE lot_id = l.id

) AS pur_result

, (SELECT COUNT(*)

FROM buy.purchase_result pr

WHERE pr.lot_id = l.id

AND pr.is_active) AS pr_count

, (SELECT string_agg(DISTINCT sup.name_full, ';’)

FROM buy.purchase_result pr

JOIN req.supplier sup

ON pr.supplier_id = sup.id

AND sup.is_active

WHERE pr.lot_id = l.id

AND pr.is_active

) AS sup_info

FROM req.lot l

WHERE l.organization_id = 964;

32

The execution plan of the statement with multiple
subqueries

QUERY PLAN

INDEX ONLY Scan USING lt_organization_id_ux ON lot l (cost=0.42..41848864.82 ROWS=7459 width=80) (actual

TIME=144.894..243809.902 ROWS=7495 loops=1)

INDEX Cond: (organization_id = 964)

Heap Fetches: 0

SubPlan 1

-> Aggregate (cost=5594.87..5594.88 ROWS=1 width=32) (actual TIME=32.387..32.388 ROWS=1 loops=7495)

-> Seq Scan ON purchase_result (cost=0.00..5594.86 ROWS=2 width=6) (actual TIME=29.084..32.361

ROWS=0 loops=7495)

FILTER: (lot_id = l.id) ROWS

Removed BY FILTER: 147909

SubPlan 2

-> Aggregate (cost=2.41..2.42 ROWS=1 width=8) (actual TIME=0.044..0.044 ROWS=1 loops=7495)

-> INDEX ONLY Scan USING ixf__purchase_result__lot_id ON purchase_result pr (cost=0.38..2.40 ROWS=2

width=0) (actual TIME=0.032..0.033 ROWS=0 loops=7495)

INDEX Cond: (lot_id = l.id) Heap Fetches: 0

SubPlan 3

-> Aggregate (cost=13.19..13.20 ROWS=1 width=32) (actual TIME=0.064..0.064 ROWS=1 loops=7495)

-> Nested Loop (cost=0.67..13.18 ROWS=1 width=97) (actual TIME=0.018..0.022 ROWS=0 loops=7495)

-> INDEX Scan USING ixf__purchase_result__lot_id ON purchase_result pr_1 (cost=0.38..4.57 ROWS=2

width=8) (actual TIME=0.005..0.006 ROWS=0 loops=7495)

INDEX Cond: (lot_id = l.id)

-> INDEX Scan USING pk__supplier ON supplier sup (cost=0.29..4.31 ROWS=1 width=105) (actual

TIME=0.023..0.023 ROWS=1 loops=3419)

INDEX Cond: (id = pr_1.supplier_id)

FILTER: is_active

ROWS Removed BY FILTER: 0

Planning TIME: 5.320 ms

Execution TIME: 243821.165 ms

33

Building one subquery using the LATERAL clause

To optimize this statement, it is required to write one query which will relate to the main dataset with
the help of the LATERAL clause. We also need to build some additional indexes.

SELECT l.id

, pr.doc_numbers

, pr.pr_count

, pr.sup_info

FROM req.lot l

LEFT JOIN LATERAL (SELECT string_agg(pr.doc_number, '; ') AS doc_numbers

, COUNT(*) FILTER(WHERE pr.is_active) AS pr_count

, string_agg(DISTINCT sup.name_full, ';') FILTER(WHERE pr.is_active) AS sup_info

FROM buy.purchase_result pr

LEFT JOIN req.supplier sup

ON sup.id = pr.supplier_id

AND sup.is_active

WHERE pr.lot_id = l.id

) pr

ON (1 = 1)

WHERE l.organization_id = 964;

CREATE INDEX pr_lot_id_doc_number_ix

ON buy.purchase_result(lot_id, is_active, supplier_id, doc_number);

CREATE UNIQUE INDEX sup_info_ux ON req.supplier(id, is_active, name_full);

34

The execution plan of the query with the LATERAL
item

QUERY PLAN

Nested LOOP LEFT JOIN (COST=7.77..64162.05 ROWS=7461 width=80) (actual

TIME=1.479..135.591 ROWS=7495 loops=1)

-> INDEX Scan USING lot_dic_cur_id_year_status_org_id_type_correct_last_version_ix ON

lot l (COST=0.42..9136.45 ROWS=7461 width=8) (actual TIME=1.416..21.601 ROWS=7495 LOOP

s=1)

INDEX Cond: (organization_id = 964)

-> AGGREGATE (COST=7.35..7.36 ROWS=1 width=72) (actual TIME=0.014..0.014 ROWS=1

loops=7495)

-> Nested LOOP LEFT JOIN (COST=0.83..7.33 ROWS=2 width=104) (actual TIME=0.006..0.008

ROWS=0 loops=7495)

-> INDEX ONLY Scan USING pr_lot_id_doc_number_ix ON purchase_result pr

(COST=0.42..2.46 ROWS=2 width=15) (actual TIME=0.004..0.004 ROWS=0 loops=7495)

INDEX Cond: (lot_id = l.id)

Heap Fetches: 0

-> INDEX ONLY Scan USING sup_info_ux ON supplier sup (COST=0.41..2.43 ROWS=1

width=105) (actual TIME=0.005..0.005 ROWS=1 loops=3419)

INDEX Cond: ((id = pr.supplier_id) AND (is_active = TRUE))

Heap Fetches: 0

Planning TIME: 1.268 ms

Execution TIME: 136.788 ms

The original query execution time: 243821.165 ms

The current query execution time: 136.788 ms

35

Statement optimization with filtering on a computed
column

It is required to filter rows by using the year value extracted from the

date_delivery_to column

EXPLAIN (ANALYZE)

SELECT l.id

FROM req.lot l

LEFT JOIN (SELECT l.id

, EXTRACT(YEAR FROM l.date_delivery_to) delivery

FROM req.lot l

) date_to

ON date_to.id = l.id

WHERE l.organization_id = 964

AND date_to.delivery >= 2019;

What will be the execution plan in this case?

36

The execution plan of the query with filtering on a
computed column

QUERY PLAN

Nested LOOP (COST=0.42..45711.14 ROWS=2486 width=8) (actual TIME=4.558..200.813 ROWS=4081

loops=1)

-> Seq Scan ON lot l (COST=0.00..27887.24 ROWS=7459 width=8) (actual TIME=1.260..157.953

ROWS=7495 loops=1)

Filter: (organization_id = 964)

ROWS Removed BY Filter: 273484

-> INDEX Scan USING pk__lot ON lot l_1 (COST=0.42..2.39 ROWS=1 width=8) (actual

TIME=0.005..0.005 ROWS=1 loops=7495)

INDEX Cond: (id = l.id)

Filter: (DATE_PART('year'::TEXT, (date_delivery_to)::TIMESTAMP WITHOUT TIME ZONE) >=

'2019'::DOUBLE PRECISION)

ROWS Removed BY Filter: 0

Planning TIME: 0.905 ms

Execution TIME: 201.428 ms

Is it possible to execute this statement without re-accessing the lot table?

37

Replacing filtering on a calculated column

If the year >= 2019, then date_delivery_to >= ‘2019-01-01’::date, which avoids re-

accessing the lot table

EXPLAIN (ANALYZE)

SELECT l.id

FROM req.lot l

WHERE l.organization_id = 964

AND l.date_delivery_to >= make_date(2019, 1, 1);

For improving query speed an additional index is required.

CREATE INDEX org_id_ddt_ix ON req.lot(organization_id,

date_delivery_to);

How will change the execution plan in this case?

38

The execution plan of the query after replacement
filtering on a calculated column

QUERY PLAN

Bitmap Heap Scan ON lot l (COST=39.97..4879.92 ROWS=3078 width=8) (actual

TIME=1.017..7.861 ROWS=4081 loops=1)

RECHECK Cond: ((organization_id = 964) AND (date_delivery_to >= '2019-01-01'::DATE))

Heap Blocks: exact=2325

-> Bitmap INDEX Scan ON org_id_ddt_ix (COST=0.00..39.20 ROWS=3078 width=0) (actual

TIME=0.650..0.651 ROWS=4081 loops=1)

INDEX Cond: ((organization_id = 964) AND (date_delivery_to >= '2019-01-

01'::DATE))

Planning TIME: 0.332 ms

Execution TIME: 8.129 ms

The original query execution time: 201.428 ms

The current query execution time: 8.129 ms

39

Query tuning with a calculated expression based on
two columns from one table

In this case we need to find rows with a non-zero section, which is a calculated

expression based on two columns from one table.

EXPLAIN (ANALYZE)

WITH ds AS (

SELECT l.id

, CASE

WHEN EXTRACT(YEAR FROM l.date_planned) = 2019 AND

EXTRACT(YEAR FROM l.date_delivery_from) = 2019 THEN 1

WHEN EXTRACT(YEAR FROM l.date_planned) = 2019 AND

EXTRACT(YEAR FROM l.date_delivery_from) > 2019 THEN 21

ELSE 0

END AS razdel

FROM req.lot l

WHERE l.year < 2019

)

SELECT *

FROM ds

WHERE razdel != 0;

40

The execution plan of the query with the calculated
expression based on two columns from one table

QUERY PLAN

--

Bitmap Heap Scan ON lot l (cost=1712.96..39577.92 ROWS=179325 width=12) (actual

TIME=143.985..523.901 ROWS=1445 loops=1)

Recheck Cond: (YEAR < 2019)

FILTER: (CASE WHEN ((date_part('year'::text, (date_planned)::TIMESTAMP WITHOUT TIME

zone) = '2019'::DOUBLE PRECISION) AND (date_part('year'::text, (date_delivery_from)::times

tamp WITHOUT TIME zone) = '2019'::DOUBLE PRECISION)) THEN 1 WHEN ((date_part('year'::text,

(date_planned)::TIMESTAMP WITHOUT TIME zone) = '2019'::DOUBLE PRECISION) AND

(date_part('year'::text, (date_delivery_from)::TIMESTAMP WITHOUT TIME zone) >

'2019'::DOUBLE PRECISION)) THEN 21 ELSE 0 END <> 0)

ROWS Removed BY FILTER: 178781

Heap Blocks: exact=20196

-> Bitmap INDEX Scan ON ix__lot__year__is_last_version__is_active (cost=0.00..1668.12

ROWS=180227 width=0) (actual TIME=14.598..14.599 ROWS=180226 loops=1)

INDEX Cond: (YEAR < 2019)

Planning TIME: 4.737 ms

Execution TIME: 524.258 ms

There is a huge difference between estimated and actual row counts (179325 and 1445).

Is it possible to replace this calculated expression?

41

Replacing the calculated column with two additional
filter conditions

At any date from the segment 2019-01-01 and 2019-12-31 the year will be equal to

2019.

At any date >= 2019-01-01 the year >= 2019.

So, it is possible to replace the calculated expression with new filtration clauses.

EXPLAIN (ANALYZE)

SELECT l.id

FROM req.lot l

WHERE l.year < 2019

AND l.date_planned BETWEEN make_date(2019, 1, 1) AND make_date(2019,

12, 31)

AND l.date_delivery_from >= make_date(2019, 1, 1);

How will the estimated row counts change in this case?

42

The execution plan of the query after the calculated
expression replacement

QUERY PLAN

Bitmap Heap Scan ON lot l (cost=1670.43..29649.97 ROWS=9215 width=8) (actual

TIME=110.011..346.557 ROWS=1445 loops=1)

Recheck Cond: (YEAR < 2019)

FILTER: ((date_planned >= '2019-01-01'::DATE) AND (date_planned <= '2019-12-

31'::DATE) AND (date_delivery_from >= '2019-01-01'::DATE))

ROWS Removed BY FILTER: 178781

Heap Blocks: exact=20196

-> Bitmap INDEX Scan ON ix__lot__year__is_last_version__is_active

(cost=0.00..1668.12 ROWS=180227 width=0) (actual TIME=16.352..16.353 ROWS=180226

loops=1)

INDEX Cond: (YEAR < 2019)

Planning TIME: 1.963 ms

Execution TIME: 346.833 ms

It is clear, that estimated row count has dramatically reduced from 179325 to 9215,

which means 19x faster.

What can be done to improve the estimates?

43

Extended statistics usage for correcting rows
estimates in a query plan

Let’s use the extended statistics of the mcv type to determine how often the combination of

the year and date_planned fields occurs. We also need to increase the columns statistics

target to improve their frequencies accuracy.

CREATE STATISTICS lot_year_date_planned(mcv) ON YEAR, date_planned FROM

req.lot;

ALTER TABLE req.lot ALTER COLUMN YEAR SET STATISTICS 1250;

ALTER TABLE req.lot ALTER COLUMN date_planned SET STATISTICS 1250;

ANALYZE req.lot;

We also should build an additional index to speed up the query.

CREATE INDEX req_dp_ddf_year_ix ON req.lot(date_planned,

date_delivery_from, YEAR);

44

The execution plan of the query after the extended
statistics gathering and the index building

QUERY PLAN

--

Bitmap Heap Scan ON lot l (cost=634.36..3059.41 ROWS=1397 width=8) (actual

TIME=5.102..7.942 ROWS=1445 loops=1)

Recheck Cond: ((date_planned >= '2019-01-01'::DATE) AND (date_planned <= '2019-

12-31'::DATE) AND (date_delivery_from >= '2019-01-01'::DATE) AND (YEAR < 2019))

Heap Blocks: exact=936

-> Bitmap INDEX Scan ON req_dp_ddf_year_ix (cost=0.00..634.01 ROWS=1397 width=0)

(actual TIME=4.970..4.970 ROWS=1445 loops=1)

INDEX Cond: ((date_planned >= '2019-01-01'::DATE) AND (date_planned <=

'2019-12-31'::DATE) AND (date_delivery_from >= '2019-01-01'::DATE) AND (YEAR <

2019))

Planning TIME: 3.181 ms

Execution TIME: 8.060 ms

The original query execution time: 523.901 ms.

The current query execution time: 7.942 ms.

It is the least difference between estimated and actual row counts.

45

Extended statistics and IN clauses

SELECT r.case_id

FROM ci_case_char r

WHERE r.char_type_cd = 'RETLTYPE'

AND r.char_val IN ('0', '2', '8');

In PostgreSQL 12, the estimated row count was less than the actual number by

more than 100 times. Extended statistics didn’t help in this case, so the IN clause

was replaced on additional filter clauses united by OR operators.

SELECT r.case_id

FROM ci_case_char r

WHERE r.char_type_cd = 'RETLTYPE’

AND (r.char_val = '0' OR r.char_val = '2' OR r.char_val = '8');

However, starting from PostgreSQL 13 this issue gets resolved by creating

extended statistics of the mcv type.

46

Excluding filtering conditions during query planning

In PostgreSQL, it is possible to exclude filtering conditions at the stage of query

planning. Let’s consider how the following construction will work based on the value of

the version_cond parameter.

WITH params AS NOT MATERIALIZED (

SELECT :version_cond AS version_cond

)

SELECT l.id

FROM req.lot l

JOIN params p

ON (1 = 1)

WHERE l.year = 2019

AND ((p.version_cond = 1 AND l.status = 50 AND l.type_correct = 0) OR

(p.version_cond = 2 AND l.status = 50 AND l.is_last_version)

);

47

The execution plan of the query in case of
version_cond = 1

QUERY PLAN

--

Bitmap Heap Scan ON lot l (cost=212.32..15299.08 ROWS=14580 width=8) (actual

TIME=1.716..14.347 ROWS=18576 loops=1)

Recheck Cond: ((YEAR = 2019) AND (type_correct = 0) AND (STATUS = 50))

Heap Blocks: exact=3262

-> Bitmap INDEX Scan ON year_type_cor_status_ix (cost=0.00..208.67 ROWS=14580

width=0) (actual TIME=1.243..1.244 ROWS=18576 loops=1)

INDEX Cond: ((YEAR = 2019) AND (type_correct = 0) AND (STATUS = 50))

Planning TIME: 0.364 ms

Execution TIME: 15.251 ms

There is no need to filter rows by the is_last_version column, because it meets the

version_cond = 2 condition.

48

The execution plan of the query in case of
version_cond = 2

QUERY PLAN

Bitmap Heap Scan ON lot l (cost=212.32..15262.63 ROWS=14580 width=8) (actual

TIME=3.067..36.650 ROWS=18576 loops=1)

Recheck Cond: ((YEAR = 2019) AND (STATUS = 50))

FILTER: is_last_version

Heap Blocks: exact=3262

-> Bitmap INDEX Scan ON year_type_cor_lv_ix (cost=0.00..208.67 ROWS=14580

width=0) (actual TIME=2.612..2.612 ROWS=18576 loops=1)

INDEX Cond: ((YEAR = 2019) AND (is_last_version = TRUE) AND (STATUS = 50))

Planning TIME: 3.586 ms

Execution TIME: 37.574 ms

There is no need to filter rows by the type_correct column, since it meets the

version_cond = 1 condition.

49

The execution plan of the query in case of
version_cond = 3

QUERY PLAN

--

RESULT (cost=0.00..0.00 ROWS=0 width=0) (actual TIME=0.002..0.002 ROWS=0 loops=1)

One-TIME FILTER: FALSE

Planning TIME: 0.429 ms

Execution TIME: 0.034 ms

If version_cond = 3, then an empty dataset will be returned, since 3 is not equal to 1 and 2.

All of this happens during the query planning stage.

In PostgreSQL, it is possible to exclude certain query conditions during query planning,

which allows developer to write less dynamic SQL code.

50

Links

pg_stat_statements module.
https://www.postgresql.org/docs/13/pgstatstatements.html

pg_stat_kcache module. https://github.com/powa-team/pg_stat_kcache

pg_wait_sampling module. https://github.com/postgrespro/pg_wait_sampling

auto_explain module. https://www.postgresql.org/docs/13/auto-explain.html

pgpro_stats module. https://postgrespro.com/docs/enterprise/12/pgpro-stats

pg_profile module. https://github.com/zubkov-andrei/pg_profile

pgpro_pwr module. https://postgrespro.com/docs/enterprise/12/pgpro-pwr

mamonsu. https://github.com/postgrespro/mamonsu

zabbix agent 2
https://github.com/zabbix/zabbix/tree/master/src/go/cmd/zabbix_agent2

https://www.postgresql.org/docs/13/pgstatstatements.html
https://github.com/powa-team/pg_stat_kcache
https://github.com/postgrespro/pg_wait_sampling
https://www.postgresql.org/docs/13/auto-explain.html
https://postgrespro.com/docs/enterprise/12/pgpro-stats
https://github.com/zubkov-andrei/pg_profile
https://postgrespro.com/docs/enterprise/12/pgpro-pwr
https://github.com/postgrespro/mamonsu
https://github.com/zabbix/zabbix

postgrespro.com

Postgres Professional

http://postgrespro.com/

p.petrov@postgrespro.com

info@postgrespro.com

http://postgrespro.com/

