Buffer Cache
Performance Analysis
And Multiple Buffer
Poolsin Oracle9l

Abstract

Is the tuning process complete once a high cadhativ has been achieved? Often times not!
This paper exposes analysis and techniques the fnaffer cache effectiveness can still be
improved even after a cache-hit ratio of nearlyetjrpercent has been achieved! Oracle9i
offers high-resolution performance analysis throifglinternal V$ and X$ performance

objects. Technigues and tips in this paper aredoagen a large-scale OLTP application
benchmark.

August 2001

Author: Kevin Closson

| ntroduction

Effective utilization of disk block buffering is@itical factor in maintaining
acceptable OLTP transaction response times. Dsgabddministrators are
challenged with the balancing act of allocatindisigint memory for disk
block buffering while ensuring adequate resoureesain for the many other
types of memory usage. Often times the tuninggss is conducted only to
the point where either there is no more memorylabia to allocate to the
buffer cache, or the system has achieved an ailyjitrégh cache-hit ratio.

Traditionally the exercise conducted by Databasmifscstrators comprised of
monitoring cache-hit ratio before and after inchegshe size of the buffer
cache. An overall cache-hit ratio of eighty to myngercent is commonly
acceptable.

This paper takes a different look at buffer cacherty by first discarding the
notion that the best performance has been reatized a high cache-hit ratio
is achieved. Advanced database servers, such ake@raffer a richness of
performance data that enable Database Adminissr&danake the best
choices for how to utilize a given amount of buffache capacity.

Additionally, a useful feature known as multipleffien pools was first
introduced in the Oracle8 release. This paper eegpasase study of an OLTP
benchmark based on Oracle9i in which the initi@heahit ratio was nearly
ninety percent. However, both transaction througlama response times were
improved through effective analysis of buffer patlization and the use of
multiple buffer pools.

Multiple Buffer Poolsin Oracledi

Oracle introduced multiple buffer pools in the Qecreleask As always,
the total number of disk block buffers in the OeaSIGA (Shared Global
Area) can be allocated based on the setting ahttialization parameter
DB_BLOCK_BUFFERS. However, with the introductionratiltiple database
block size support in Oracle9i, there are new S@#eb pool tunables. If
multiple block sizes will be used, the DB_ BLOCK_BEERS parameter is
not supported. For this reason, this paper wilteearound the new Oracle9i
cache sizing parameters.

If multiple pools are not defined, all of the buffewill be associated with the
DEFAULT buffer pool. The DEFAULT pool is used tafter all blocks from
tablespaces that use the default block’sidewever, the buffer cache must be
partitioned into multiple pools if multiple blockzes will be used. The buffer

! The scope of this paper does not include a ftdirtal on the multiple buffer pools feature. Oracle
Documentation should be consulted for clear, cotepteverage.
2 The default block size in Oracle9i is establishaith the init.ora tunableb_block_size

cache can be partitioned into a maximum of fivéfdiybools by setting the
following initialization parameters:

- DB_CACHE_SIZE

- DB_RECYCLE_CACHE_SIZE
- DB_KEEP_CACHE_SIZE

- DB_NK_CACHE_SIZE

These new Oracle9i init.ora parameters take aaszgnment in Megabytes.
For example, DB_CACHE_SIZE = 500M.

The intended usage of DB_RECYCLE_CACHE_SIZE and
DB_KEEP_CACHE_SIZE is to establish partitionedss#t buffers from the
DEFAULT buffer pool. These buffers will only be liged for objects
explicitly defined by the Database Administratoingsthe ALTER TABLE,
ALTER INDEX and ALTER CLUSTER commands. There aceKEEP or
RECYCLE pools allowed for any of the non-defautidk size pools.

The DB_NK_CACHE_SIZE parameter is used to configure upota f
additional buffer pools beyond the default. A conrmusage for this
functionality is to support transporting a tablesp&om a different block size
database. If a database expects to import a tremap®tablespace from a
database that is of a different block size, itasessary to configure a buffer
pool with the appropriate block size. For instanicthe default block size for
the receiving database is 4K, but the transpoeblkspace is from an 8K
database, the DB_8K_CACHE_SIZE needs to b set

The RECYCLE buffer pool is best utilized to “protethe default buffer pool
from being consumed by randomly accessed blockisiaf. With releases
prior to Oracle8, the only method available to gate the affect of such
access patterns was through the ALTER TABLE comnveitidthe
NOCACHE option. Since it is an LRU based approsite NOCACHE
option can only offer limited benefit.

When the NOCACHE option is applied to an objeabcesses are limited to a
low percentage of buffers from the least recenglycdliend of the LRU lists
when reading in blocks from that object. Any LRt /iof course, was fair
game. Unlike most freshly read blocks howeverseheuffers are not moved
to the most-recently-used end of its LRU list, &wraging out of the cache
quicker. This differs greatly from the effect oRECYCLE buffer pool.

! The ALTER SYSTEM command can also be used to diceiy add the 8K buffer pool.

Figure 1.0 depicts the initialization parametetisgs required to allocate a
buffer cache of one-hundred Megabytes in total wiitle ten percent allocated
to a recycle buffer pool.

db_cache_si ze = 100M
db_recycl e_cache_size = 10M

Figure 1.0: Initialization parameters allocatingea- percentecycle pool

Often times an application will have a few verytical objects, such as
indexes, that are small enough to fit in the butche but are quickly pushed
out by other objects. This is the perfect caseifong the initialization
parameter called DB_KEEP_CACHE_SIZE. The KEEPdufiool is aptly
named. It is intended to be used for objects Hiat absolute priority in the
cache. For instance, critical indexes or small fapkables. An approach to
sizing the KEEP buffer pool will be described inaikelater in this paper.
However, it should be considered a dedicated podfdhe buffer cache for
very special objects.

Objects that are not explicitly assigned to eitherKEEP or RECYCLE
buffer pool will be cycled through the DEFAULT baffpool. The default
buffer pool is comprised of the remaining buffene® the RECYCLE and
KEEP buffer pools have been allocated

Figure 1.1 is a depiction of an Oracle SGA buffecle with a total size of
one hundred Megabytes. In the illustration, tergdt®ites have been
allocated to the RECYCLE buffer pool. In additiexty Megabytes have
been configured for the KEEP buffer pool. The ranmag thirty Megabytes
are for the DEFAULT buffer pool.

db_cache_si ze = 100M
db_recycl e_cache_size = 10M
db_keep_cache_si ze = 60M

Figure 1.1: Initialization parameters employingddfault-block-size buffer
pools

Monitoring Buffer Pool Effectiveness

Oracle9i contains a richness of runtime performatata specifically related
to the buffer cache. The internal performanceaibjand views (X$ and V$)
provide high-resolution data that is critical t@@ssing the root cause of
performance degradation. The Oracle documentatotains a good deal of
information on these performance objects and israunged by third-party
industry publications.

For the sake of this paper, the performance dataost interest will be
gleaned from the following performance analysisoty:

* xbh, xkcbwds

» v$buffer_pool

« vSfilestat, obj$

e v$sysstat
dba_data files

The information derived from these objects canurarearized into the
following three categories:

+ Buffer cache-hit ratio.

The v$sysstat performance view can be used tolesdctine cache-hit
ratio. The columns contain cumulative data sinecnistance was booted.

Database Administrators typically perform deltaragiens over periods of
time with this data. In the case of this paper, &y, the tests were
conducted with a fresh boot of the database instartore each run. The
formula requires the sum of both types of Oractgdal reads known as
db block gets andconsistent gets as well as the number of physical reads.

Figure 2.0 contains both the formula and the S@testent used to
calculate the cache-hit ratio. For reference, shigot will be referred to as
hit_ratio.sgl for the remainder of this paper.

REM hitratio = 1 — (preads / Ireads)

column Ireads format 9999999999 heading 'LOGICAEARS'
column preads format 9999999999 heading 'PHYSICAARS'
select sum(value) Ireads from $sysstat

where name in ('db block gets', 'consisgets");
select value preads

from vesysstat

where name in (‘physical reads");

Figure 2.0hit_ratio.sgl - SQL statement provides data for cache-hit ratio
calculation

* Object presencein thebuffer cacheon an individual buffer pool
basis.

This script provides a fine grain view of each paahin the buffer cache.
Figure 2.1 contains the SQL statement for this dali@ction. For
reference, this script will be referred tocashe content.sgl for the
remainder of this paper.

select buff_pool.name pool, 0.name object, sunilodks

from

(select set_ds, obj, count(*) ct from x$bh groypsbt_ds, obj) bh, obj$ o,x$kcbwds
kcbw,v$buffer_pool buff_pool

where o.dataobj# = bh.obj

and o.owner# > 0 and bh.set_ds = kcbw.addr

and kcbw.set_id between buff_pool.lo_setid and

buff_pool.hi_setid and buff_pool.buffers != 0

group by buff_pool.name, o.name, o.subname

order by buff_pool.name, o.name, o.subname ;

Figure 2.1: cache_content.sgl - SQL statement providing buffer pool content

» Datafile physical reads by object.

This script provides data that facilitates deteimgrwhich objects in the
database are cycling through the cache. Notesthigt presumes a
database schema that has an established like-rtabledpace for each
table. Figure 2.2 contains the SQL statement figrdhata collection. For
reference, this script will be referred toagect_reads.sgl for the
remainder of this paper.

select tablespace_name,sum(PHYRDS) reads
from dba_data_files,v$filestat

where dba_data_files.file_id = v$filestat.file#
group by tablespace_name

order by reads desc;

Figure 2.2:object_reads.sgl - SQL statement attributing datafile reads to each
tablespace

Benchmark Study
In order to clearly depict the benefits of multipleffer pools in Oracle9i, the
following benchmark analysis is provided.

The workload chosen was based upon an Order Emti'fPeoduct Tracking
OLTP application running on Oracle9i.

The database consisted of approximately forty Gitgsbof table storage and
index overhead. On average, each transaction ¢smdisvelve DML
statements. The transaction mix can be broken doterfour primary areas as
shown in Figure 3.0.

Transaction Type Percent of Total Transactions
Insert Intensive:

Taking New Orders 18%
Adding New Customers, New Products 16%

and Warehouse Stock

Select Intensive:
Reports (Shipment Status, Stock on Hand, etc) 54%

Update Intensive:
Order Amendment, Customer Updates, Pricing 10%

Deletes:
Closing Customer Accounts, Item Discontinuation 2%

Figure 3.0: Benchmark Transaction Breakout

The block size chosen for the database was fowblgies. In all tests, the
total capacity of the buffer cache was roughly ®igabytes.

The primary metric of success in this suite ofgesthe ability to improve
transaction response times by only changing hovbtifier pools are
configured while keeping the total capacity of taehe constant.

The test suite was first executed with no spe@dliauffer pool tuning.

Default Buffer Pool Test

In order to analyze default buffer cache effectasmnof Oracle9i with the test
workload described above, the initialization parterse
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE weragy
commented out.

At the end of the thirty-minute run, the followidgta was collected.

First, thehit_ratio.sgl script was executed to determine the buffer cdghe-
ratio. Figure 3.1 contains the result that showache-hit ratio of 87.9%As
suggested in the introduction section of this papest tuning efforts are
concluded once this level of cache-hit ratio haanbechieved. However, a
closer look at cache efficiency is needed.

72701090

PHYSI CAL READS

8787180

Figure 3.1: Cache-hit ratio for default buffer poedt is 87.9%

Using theobject_reads.sql script, the next performance aspect to consider is
the number of datafile reads per database objegird-3.2 reveals that 53.5%
of all physical reads originate from a combinatidnthe WAREHOUSE and
CUSTOMER tables

11— (8787180 /72701090)
2WARE (2,716,321) + CUST (1,992,713) = 4,709,030T_PHYS_READS (8,787,180)

TABLESPACE_NANE READS
WAREHOUSE 2716321
CUSTOMER 1992713
| TM | DX 1466615
| TEM 1324614
ORD_| DX 451631
ORDERS 303800
NAVE_| DX 153945
PRODUCT 112353
WHR_| DX 106085
ROLL_2 59901
ROLL_1 58980
CUS 1 DX 26312

Figure 3.2: Number of physical reads per databagsct

This attribute is not necessarily troubling prowdbe application
concentrates on small portions of these tablesalidae objects that are
causing reduced cache efficiency tend to exhihlit twain characteristics.

First, they will account for large percentageslbphysical reads. Second,
once the blocks are in the cache they will nothmeresd by other processes and
will therefore be quickly replaced based upon tR&JLpolicy. The
cache_content.sgl script reports the number of blocks in the cachmfeach
database object. Output from this script appeaFsgare 3.3.

Any table or index sustaining a large number ofiseshould also have a
commensurate presence in the cache. If notsafesto surmise that the
blocks are being read at random and thereforearbaing shared. Figure 3.3
reveals that the WAREHOUSE and CUSTOMER tables ¢oetbonly
represent 28% of all buffers in the cattile Figure 3.2 shows reads against
these two tables account for 54% of all physicatise

POOL_NAVE OBJECT BLOCKS
DEFUALT WAREHOUSE 86273
PRODUCT 63843
| TM | DX 57925
CUSTOMER 54943
WHR_| DX 51725
ORD_| DX 46701
| TEM 44929
CUS_| DX 18223
ORDERS 10844

Figure 3.3: Buffer cache content by object

! Note, Figure 3.3 does not itemize the entire 500 fiuffers for the sake of brevity. Figure 3.3
accounts for the main application tables and indeXbe 28% WAREHOUSE + CUSTOMER cache
footprint is 28% of the entire 500,000 buffers.

10

Given the tendency of the test application to ramgaccess the
WAREHOUSE and CUSTOMER tables, there are an inatdimumber of
reads against all the other objects. With OLTP Jaa#ts, index blocks are
generally revisited by other processes, howevesrgthie pervasiveness of the
WAREHOUSE and CUSTOMER tables they are getting pdsiut of the
cache. Indeed, Figure 3.3 suggests that index slac&ount for only roughly
35% of the entire buffer cache

Performance Summary with Default Buffer Cache
Given the inefficient cache profile for index buffeg with the test
application, the benchmark performance achievediwaigd to 858
transaction per second with an average respongeafimll seconds.

Configuring Multiple Buffer Pools

Given the random access nature of the WAREHOUSECAMSTOMER
tables in the test application, the cache effentgs for INDEX buffering is
compromised. With Oracle9i technology, there are typical methods for
addressing this issue. One technique is to u@izeall RECYCLE buffer
pool and force all buffering of the WAREHOUSE and€£TOMER tables
through this pool. The other approach is to utibz€EEP buffer pool that will
host mostly indexes. The later is the method chéwethis study.

With Oracle9i, configuring multiple buffer poolsmsists of two main
challenges. The first step is to determine whicjeacs to assign to each buffer
pool. The second step is to determine the sizadi buffer pool. Monitoring
cache content with theache_content.sgl script provides data showing how
many blocks from each object are in the cache. Wewehe more elusive
information is how many blocks from each objeetd to be in the cache.

When utilizing a KEEP buffer pool it is generallgcaptable to assign the
most active indexes to it. However, it may no@aberopriate to limit the
KEEP buffer pool to indexes alone. In the castheftest workload, the
PRODUCT table is also a candidate for the KEEPdwydbol. Although it is
not intuitive, the data collected from the def&@A tests indicates the
PRODUCT table has an extremely high access rdteeinache. Figure 3.2
reveals that the PRODUCT table only represents hf3thte total physical
reads yet Figure 3.3 suggests it accounts for 1384 buffers in the cache.
This irregular ratio of physical reads to cachespree is the essential
characteristic of a high cache-hit rate object.tifiavhile not suffering a
significant portion of physical reads it still aceds for significant cache

L All indexes in the benchmark application have ffixsof IDX and are stored in tablespaces named
after the table they contain. Hence, reads accounted against the ITM_IDX tablespace are the results
of query plans that access the ITM_IDX index

11

presence. For this sake, the PRODUCT table vath &le assigned to the
KEEP buffer pool in the multiple buffer pool test.

For this case study, the absolute number of buffibosated to the KEEP
buffer pool is based upon the cache data from éfi@ult SGA test in Figure
3.3. The CUSTOMER and WAREHOUSE tables accoun28&8 of all
buffers in the cache. Since these are the tablesaméto exclude from the
KEEP buffer pool, the 28% would typically be configd as the remainder
after the KEEP pool is allocated. However, the WARRJSE table is 35%
(86273 buffers) more pervasive than the secondemdnp which is the
PRODUCT table (63843 buffers). To compensate fisréffect, the size of
the KEEP pool was adjusted by roughly the same 3bberefore, the KEEP
buffer pool size chosen was 80% of the entire buféehe as depicted in
Figure 4.0.

db_cache_si ze = 2000M
db_keep_cache_size = 1600M

Figure 4.0: Configuration parameters for multiplgfer pools test

Multiple Buffer Pools Test

The Oracle instance was first booted with the biyftl configuration listed
in Figure 4.0. The commands in Figure 5.0 were tharcuted to assign the
desired objects to the KEEP buffer pool.

ALTER TABLE product BUFFER POCL KEEP;
ALTER | NDEX it m i dx BUFFER POCL KEEP;
ALTER | NDEX or d_i dx BUFFER POCL KEEP;
ALTER | NDEX whr _i dx BUFFER POCL KEEP;
ALTER | NDEX cus_i dx BUFFER POCL KEEP;
ALTER | NDEX prd_i dx BUFFER POCL KEEP;

Flgure 5.0. commanads 10 assoclate OBJGCES With arkeuiier pool

Running the test workload under this buffer caatr&iguration yielded
substantially improved cache efficiency while oiffigran overall cache-hit
ratio of 89% - a 1% variance from that achievethmdefault buffer cache
test.

Figure 5.1 shows the cache-hit data usingratio.sgl script.

78517177
PHYSI CAL READS

8564204

Figure 5.1: Cache-hit ratio for multiple buffer po@s 89%

12

Most notable was the improvement in index blockhaag. While the default
buffer cache test results show that index blocksasent 35% of the whole,
with a KEEP buffer pool that figure is improved $326. Figure 5.2 shows
that index presence in the cache is increaseddaspectable 67%. Moreover,
the caching of ITM_IDX index alone improved by 26@8m the 11%
achieved with a default cache to the 39.6% seé&igure 5.2.

POOL_NAME OBJECT BLOCKS
DEFAULT WAREHOUSE 24225
| TEM 23409
CUSTOVER 13586
ORDERS 6140
KEEP | TM | DX 198207
PRODUCT 63980
ORD_| DX 62661
WHR_| DX 52371
CUS_I DX 18255
PRD_I DX 4526

Figure 5.2: Buffer cache content by object withitiple buffer pools

Another dramatic effect was the reduction in phgisieads for index objects.
Data from Figures 3.1 and 3.2 show that with awefauffer pool, the
2,204,588 physical disk reads for index object®anted for roughly 25% of
the total. With a KEEP buffer pool the total plogireads for index objects
was 1,056,471, as shown in Figure 5.3, representihgl2% of the total
reads - a 52% improvement in buffering index blocks

TABLESPACE_NANE READS
WAREHOUSE 3180670
CUSTOMER 2145999
| TEM 1404929
| TM | DX 667863
ORDERS 318160
ROLL_1 182327
ROLL_2 180950
NAVE_| DX 166831
ORD_I DX 131900
PRODUCT 80686
WHR_| DX 68408
CUS_I DX 21469

Figure 5.3: Physical reads per database objebtmatitiple buffer pools

Additional performance gains were realized by assmgthe PRODUCT table
to the KEEP buffer pool. Figure 3.2 shows thathia default buffer cache case

13

112,353 disk read operations occurred for the PRODUAble. That figure
was reduced by roughly 28% down to 80,686 reads.

Using multiple buffer pools usually results in widariation in physical reads
for at least certain tables or indexes. In the caslkis performance study, the
tradeoff was increased physical reads on the WAREBS8BD and CUSTOMER
tables for the sake of better cache efficiency.@/tie sum of physical disk
reads for WAREHOUSE and CUSTOMER increased 13% fitoerdefault
buffer cache case as seen in Figure 5.4, thepbtalical reads actually
decreased by approximately 2.5% as seen in Figuiesnd 5.1.

6000

5000 -

4000 -
OCUSTOMER

3000 -

B WAREHOUSE

2000 -

1000 -

DEFAULT MULTIPLE POOLS

Figure 5.4: Comparison of CUSTOMER and WAREHOU S&dse

Performance Summary with M ultiple Buffer Pools

The improved cache efficiency, due to utilizing tiplé buffer pools, resulted
in a performance increase of 11% for a transag@rsecond rate of 952.
The average response time improved by 13% - dowdo® seconds.

Summary

With multiple buffer pool support in Oracle9i, tiadnal performance tuning
methodology is not always sufficient. As demortstlawith the performance
study in this whitepaper, additional performancpassible even after reports
of extremely high cache-hit ratios - provided thisreemaining system
bandwidth.

14

