
 1

Buffer Cache
Performance Analysis
And Multiple Buffer
Pools in Oracle9i

Abstract
Is the tuning process complete once a high cache-hit ratio has been achieved? Often times not!
This paper exposes analysis and techniques that prove buffer cache effectiveness can still be
improved even after a cache-hit ratio of nearly ninety-percent has been achieved! Oracle9i
offers high-resolution performance analysis through its internal V$ and X$ performance
objects. Techniques and tips in this paper are based upon a large-scale OLTP application
benchmark.

 2

August 2001

Author: Kevin Closson

 3

Introduction
Effective utilization of disk block buffering is a critical factor in maintaining
acceptable OLTP transaction response times. Database Administrators are
challenged with the balancing act of allocating sufficient memory for disk
block buffering while ensuring adequate resources remain for the many other
types of memory usage. Often times the tuning process is conducted only to
the point where either there is no more memory available to allocate to the
buffer cache, or the system has achieved an arbitrarily high cache-hit ratio.

Traditionally the exercise conducted by Database Administrators comprised of
monitoring cache-hit ratio before and after increasing the size of the buffer
cache. An overall cache-hit ratio of eighty to ninety percent is commonly
acceptable.

This paper takes a different look at buffer cache tuning by first discarding the
notion that the best performance has been realized once a high cache-hit ratio
is achieved. Advanced database servers, such as Oracle9i, offer a richness of
performance data that enable Database Administrators to make the best
choices for how to utilize a given amount of buffer cache capacity.

Additionally, a useful feature known as multiple buffer pools was first
introduced in the Oracle8 release. This paper exposes a case study of an OLTP
benchmark based on Oracle9i in which the initial cache-hit ratio was nearly
ninety percent. However, both transaction throughput and response times were
improved through effective analysis of buffer pool utilization and the use of
multiple buffer pools.

Multiple Buffer Pools in Oracle9i
Oracle introduced multiple buffer pools in the Oracle8 release1. As always,
the total number of disk block buffers in the Oracle SGA (Shared Global
Area) can be allocated based on the setting of the initialization parameter
DB_BLOCK_BUFFERS. However, with the introduction of multiple database
block size support in Oracle9i, there are new SGA buffer pool tunables. If
multiple block sizes will be used, the DB_BLOCK_BUFFERS parameter is
not supported. For this reason, this paper will center around the new Oracle9i
cache sizing parameters.

If multiple pools are not defined, all of the buffers will be associated with the
DEFAULT buffer pool. The DEFAULT pool is used to buffer all blocks from
tablespaces that use the default block size2. However, the buffer cache must be
partitioned into multiple pools if multiple block sizes will be used. The buffer

1 The scope of this paper does not include a full tutorial on the multiple buffer pools feature. Oracle
Documentation should be consulted for clear, complete coverage.
2 The default block size in Oracle9i is established with the init.ora tunable db_block_size

 4

cache can be partitioned into a maximum of five buffer pools by setting the
following initialization parameters:

• DB_CACHE_SIZE
• DB_RECYCLE_CACHE_SIZE
• DB_KEEP_CACHE_SIZE
• DB_NK_CACHE_SIZE

These new Oracle9i init.ora parameters take a size assignment in Megabytes.
For example, DB_CACHE_SIZE = 500M.

The intended usage of DB_RECYCLE_CACHE_SIZE and
DB_KEEP_CACHE_SIZE is to establish partitioned sets of buffers from the
DEFAULT buffer pool. These buffers will only be utilized for objects
explicitly defined by the Database Administrator using the ALTER TABLE,
ALTER INDEX and ALTER CLUSTER commands. There are no KEEP or
RECYCLE pools allowed for any of the non-default block size pools.

The DB_NK_CACHE_SIZE parameter is used to configure up to four
additional buffer pools beyond the default. A common usage for this
functionality is to support transporting a tablespace from a different block size
database. If a database expects to import a transportable tablespace from a
database that is of a different block size, it is necessary to configure a buffer
pool with the appropriate block size. For instance, if the default block size for
the receiving database is 4K, but the transported tablespace is from an 8K
database, the DB_8K_CACHE_SIZE needs to be set1.

The RECYCLE buffer pool is best utilized to “protect” the default buffer pool
from being consumed by randomly accessed blocks of data. With releases
prior to Oracle8, the only method available to mitigate the affect of such
access patterns was through the ALTER TABLE command with the
NOCACHE option. Since it is an LRU based approach, the NOCACHE
option can only offer limited benefit.

When the NOCACHE option is applied to an object, processes are limited to a
low percentage of buffers from the least recently used end of the LRU lists
when reading in blocks from that object. Any LRU list, of course, was fair
game. Unlike most freshly read blocks however, these buffers are not moved
to the most-recently-used end of its LRU list, thereby aging out of the cache
quicker. This differs greatly from the effect of a RECYCLE buffer pool.

1 The ALTER SYSTEM command can also be used to dynamically add the 8K buffer pool.

 5

Figure 1.0 depicts the initialization parameter settings required to allocate a
buffer cache of one-hundred Megabytes in total size with ten percent allocated
to a recycle buffer pool.

db_cache_size = 100M
db_recycle_cache_size = 10M

Figure 1.0: Initialization parameters allocating a ten- percent recycle pool

Often times an application will have a few very critical objects, such as
indexes, that are small enough to fit in the buffer cache but are quickly pushed
out by other objects. This is the perfect case for using the initialization
parameter called DB_KEEP_CACHE_SIZE. The KEEP buffer pool is aptly
named. It is intended to be used for objects that take absolute priority in the
cache. For instance, critical indexes or small look-up tables. An approach to
sizing the KEEP buffer pool will be described in detail later in this paper.
However, it should be considered a dedicated portion of the buffer cache for
very special objects.

Objects that are not explicitly assigned to either the KEEP or RECYCLE
buffer pool will be cycled through the DEFAULT buffer pool. The default
buffer pool is comprised of the remaining buffers once the RECYCLE and
KEEP buffer pools have been allocated

Figure 1.1 is a depiction of an Oracle SGA buffer cache with a total size of
one hundred Megabytes. In the illustration, ten Megabytes have been
allocated to the RECYCLE buffer pool. In addition, sixty Megabytes have
been configured for the KEEP buffer pool. The remaining thirty Megabytes
are for the DEFAULT buffer pool.

db_cache_size = 100M
db_recycle_cache_size = 10M
db_keep_cache_size = 60M

Figure 1.1: Initialization parameters employing all default-block-size buffer
pools

 6

Monitoring Buffer Pool Effectiveness
Oracle9i contains a richness of runtime performance data specifically related
to the buffer cache. The internal performance objects and views (X$ and V$)
provide high-resolution data that is critical to assessing the root cause of
performance degradation. The Oracle documentation contains a good deal of
information on these performance objects and is augmented by third-party
industry publications.

For the sake of this paper, the performance data of most interest will be
gleaned from the following performance analysis objects:

• xbh, xkcbwds
• v$buffer_pool
• v$filestat, obj$
• v$sysstat
• dba_data_files

The information derived from these objects can be summarized into the
following three categories:

• Buffer cache-hit ratio.

The v$sysstat performance view can be used to calculate the cache-hit
ratio. The columns contain cumulative data since the instance was booted.

Database Administrators typically perform delta operations over periods of
time with this data. In the case of this paper, however, the tests were
conducted with a fresh boot of the database instance before each run. The
formula requires the sum of both types of Oracle logical reads known as
db block gets and consistent gets as well as the number of physical reads.

Figure 2.0 contains both the formula and the SQL statement used to
calculate the cache-hit ratio. For reference, this script will be referred to as
hit_ratio.sql for the remainder of this paper.

 7

REM hit ratio = 1 – (preads / lreads)
column lreads format 9999999999 heading 'LOGICAL READS'
column preads format 9999999999 heading 'PHYSICAL READS'

 select sum(value) lreads from v$sysstat
where name in ('db block gets', 'consistent gets');

 select value preads
from v$sysstat
where name in ('physical reads');

Figure 2.0: hit_ratio.sql - SQL statement provides data for cache-hit ratio
calculation

• Object presence in the buffer cache on an individual buffer pool

basis.

This script provides a fine grain view of each pool within the buffer cache.
Figure 2.1 contains the SQL statement for this data collection. For
reference, this script will be referred to as cache_content.sql for the
remainder of this paper.

select buff_pool.name pool, o.name object, sum(ct) blocks
from
(select set_ds, obj, count(*) ct from x$bh group by set_ds, obj) bh, obj$ o,x$kcbwds
kcbw,v$buffer_pool buff_pool
where o.dataobj# = bh.obj
and o.owner# > 0 and bh.set_ds = kcbw.addr
and kcbw.set_id between buff_pool.lo_setid and
buff_pool.hi_setid and buff_pool.buffers != 0
group by buff_pool.name, o.name, o.subname
order by buff_pool.name, o.name, o.subname ;

Figure 2.1: cache_content.sql - SQL statement providing buffer pool content

• Datafile physical reads by object.

This script provides data that facilitates determining which objects in the
database are cycling through the cache. Note, this script presumes a
database schema that has an established like-named tablespace for each
table. Figure 2.2 contains the SQL statement for this data collection. For
reference, this script will be referred to as object_reads.sql for the
remainder of this paper.

 8

select tablespace_name,sum(PHYRDS) reads
from dba_data_files,v$filestat
where dba_data_files.file_id = v$filestat.file#
group by tablespace_name
order by reads desc;

Figure 2.2: object_reads.sql - SQL statement attributing datafile reads to each
tablespace

Benchmark Study
In order to clearly depict the benefits of multiple buffer pools in Oracle9i, the
following benchmark analysis is provided.

The workload chosen was based upon an Order Entry and Product Tracking
OLTP application running on Oracle9i.

The database consisted of approximately forty Gigabytes of table storage and
index overhead. On average, each transaction consists of twelve DML
statements. The transaction mix can be broken down into four primary areas as
shown in Figure 3.0.

Transaction Type Percent of Total Transactions

Insert Intensive:
Taking New Orders 18%
Adding New Customers, New Products 16%
and Warehouse Stock

Select Intensive:
Reports (Shipment Status, Stock on Hand, etc) 54%

Update Intensive:
Order Amendment, Customer Updates, Pricing 10%

Deletes:
Closing Customer Accounts, Item Discontinuation 2%

Figure 3.0: Benchmark Transaction Breakout

The block size chosen for the database was four Kilobytes. In all tests, the
total capacity of the buffer cache was roughly two Gigabytes.

 9

The primary metric of success in this suite of tests is the ability to improve
transaction response times by only changing how the buffer pools are
configured while keeping the total capacity of the cache constant.

The test suite was first executed with no specialized buffer pool tuning.

Default Buffer Pool Test
In order to analyze default buffer cache effectiveness of Oracle9i with the test
workload described above, the initialization parameters
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE were simply
commented out.

At the end of the thirty-minute run, the following data was collected.

First, the hit_ratio.sql script was executed to determine the buffer cache-hit
ratio. Figure 3.1 contains the result that shows a cache-hit ratio of 87.9%1. As
suggested in the introduction section of this paper, most tuning efforts are
concluded once this level of cache-hit ratio has been achieved. However, a
closer look at cache efficiency is needed.

LOGICAL READS

 72701090

PHYSICAL READS

 8787180

Figure 3.1: Cache-hit ratio for default buffer pool test is 87.9%

Using the object_reads.sql script, the next performance aspect to consider is
the number of datafile reads per database object. Figure 3.2 reveals that 53.5%
of all physical reads originate from a combination of the WAREHOUSE and
CUSTOMER tables2.

1 1 – (8787180 / 72701090)
2 WARE (2,716,321) + CUST (1,992,713) = 4,709,034 / TOT_PHYS_READS (8,787,180)

 10

TABLESPACE_NAME READS
------------------------------ ----------
WAREHOUSE 2716321
CUSTOMER 1992713
ITM_IDX 1466615
ITEM 1324614
ORD_IDX 451631
ORDERS 303800
NAME_IDX 153945
PRODUCT 112353
WHR_IDX 106085
ROLL_2 59901
ROLL_1 58980
CUS_IDX 26312

Figure 3.2: Number of physical reads per database object

This attribute is not necessarily troubling provided the application
concentrates on small portions of these tables. Database objects that are
causing reduced cache efficiency tend to exhibit two main characteristics.
First, they will account for large percentages of all physical reads. Second,
once the blocks are in the cache they will not be shared by other processes and
will therefore be quickly replaced based upon the LRU policy. The
cache_content.sql script reports the number of blocks in the cache from each
database object. Output from this script appears in Figure 3.3.

Any table or index sustaining a large number of reads should also have a
commensurate presence in the cache. If not, it is safe to surmise that the
blocks are being read at random and therefore are not being shared. Figure 3.3
reveals that the WAREHOUSE and CUSTOMER tables combined only
represent 28% of all buffers in the cache1 while Figure 3.2 shows reads against
these two tables account for 54% of all physical reads.

POOL_NAME OBJECT BLOCKS
--------- ------------------------ ----------
DEFUALT WAREHOUSE 86273
 PRODUCT 63843
 ITM_IDX 57925
 CUSTOMER 54943
 WHR_IDX 51725
 ORD_IDX 46701
 ITEM 44929
 CUS_IDX 18223
 ORDERS 10844

Figure 3.3: Buffer cache content by object

1 Note, Figure 3.3 does not itemize the entire 500,000 buffers for the sake of brevity. Figure 3.3
accounts for the main application tables and indexes. The 28% WAREHOUSE + CUSTOMER cache
footprint is 28% of the entire 500,000 buffers.

 11

Given the tendency of the test application to randomly access the
WAREHOUSE and CUSTOMER tables, there are an inordinate number of
reads against all the other objects. With OLTP workloads, index blocks are
generally revisited by other processes, however given the pervasiveness of the
WAREHOUSE and CUSTOMER tables they are getting pushed out of the
cache. Indeed, Figure 3.3 suggests that index blocks account for only roughly
35% of the entire buffer cache1.

Performance Summary with Default Buffer Cache
Given the inefficient cache profile for index buffering with the test
application, the benchmark performance achieved was limited to 858
transaction per second with an average response time of .11 seconds.

Configuring Multiple Buffer Pools
Given the random access nature of the WAREHOUSE and CUSTOMER
tables in the test application, the cache effectiveness for INDEX buffering is
compromised. With Oracle9i technology, there are two typical methods for
addressing this issue. One technique is to utilize a small RECYCLE buffer
pool and force all buffering of the WAREHOUSE and CUSTOMER tables
through this pool. The other approach is to utilize a KEEP buffer pool that will
host mostly indexes. The later is the method chosen for this study.

With Oracle9i, configuring multiple buffer pools consists of two main
challenges. The first step is to determine which objects to assign to each buffer
pool. The second step is to determine the size of each buffer pool. Monitoring
cache content with the cache_content.sql script provides data showing how
many blocks from each object are in the cache. However, the more elusive
information is how many blocks from each object need to be in the cache.

When utilizing a KEEP buffer pool it is generally acceptable to assign the
most active indexes to it. However, it may not be appropriate to limit the
KEEP buffer pool to indexes alone. In the case of the test workload, the
PRODUCT table is also a candidate for the KEEP buffer pool. Although it is
not intuitive, the data collected from the default SGA tests indicates the
PRODUCT table has an extremely high access rate in the cache. Figure 3.2
reveals that the PRODUCT table only represents 1.3% of the total physical
reads yet Figure 3.3 suggests it accounts for 13% of all buffers in the cache.
This irregular ratio of physical reads to cache presence is the essential
characteristic of a high cache-hit rate object. That is, while not suffering a
significant portion of physical reads it still accounts for significant cache

1 All indexes in the benchmark application have a suffix of IDX and are stored in tablespaces named
after the table they contain. Hence, reads accounted against the ITM_IDX tablespace are the results
of query plans that access the ITM_IDX index

 12

presence. For this sake, the PRODUCT table will also be assigned to the
KEEP buffer pool in the multiple buffer pool test.

For this case study, the absolute number of buffers allocated to the KEEP
buffer pool is based upon the cache data from the default SGA test in Figure
3.3. The CUSTOMER and WAREHOUSE tables account for 28% of all
buffers in the cache. Since these are the tables we want to exclude from the
KEEP buffer pool, the 28% would typically be configured as the remainder
after the KEEP pool is allocated. However, the WAREHOUSE table is 35%
(86273 buffers) more pervasive than the second runner-up which is the
PRODUCT table (63843 buffers). To compensate for this effect, the size of
the KEEP pool was adjusted by roughly the same 35%. Therefore, the KEEP
buffer pool size chosen was 80% of the entire buffer cache as depicted in
Figure 4.0.

db_cache_size = 2000M
db_keep_cache_size = 1600M

Figure 4.0: Configuration parameters for multiple buffer pools test

Multiple Buffer Pools Test
The Oracle instance was first booted with the buffer pool configuration listed
in Figure 4.0. The commands in Figure 5.0 were then executed to assign the
desired objects to the KEEP buffer pool.

ALTER TABLE product BUFFER POOL KEEP;
ALTER INDEX itm_idx BUFFER POOL KEEP;
ALTER INDEX ord_idx BUFFER POOL KEEP;
ALTER INDEX whr_idx BUFFER POOL KEEP;
ALTER INDEX cus_idx BUFFER POOL KEEP;
ALTER INDEX prd_idx BUFFER POOL KEEP;

Figure 5.0: Commands to associate objects with a KEEP buffer pool

Running the test workload under this buffer cache configuration yielded
substantially improved cache efficiency while offering an overall cache-hit
ratio of 89% - a 1% variance from that achieved in the default buffer cache
test.

Figure 5.1 shows the cache-hit data using hit_ratio.sql script.

LOGICAL READS

 78517177

PHYSICAL READS

 8564204

Figure 5.1: Cache-hit ratio for multiple buffer pools is 89%

 13

Most notable was the improvement in index block caching. While the default
buffer cache test results show that index blocks represent 35% of the whole,
with a KEEP buffer pool that figure is improved by 91%. Figure 5.2 shows
that index presence in the cache is increased to a respectable 67%. Moreover,
the caching of ITM_IDX index alone improved by 260% from the 11%
achieved with a default cache to the 39.6% seen in Figure 5.2.

POOL_NAME OBJECT BLOCKS
--------- ------------------------ ----------
DEFAULT WAREHOUSE 24225
 ITEM 23409
 CUSTOMER 13586
 ORDERS 6140
KEEP ITM_IDX 198207
 PRODUCT 63980
 ORD_IDX 62661
 WHR_IDX 52371
 CUS_IDX 18255
 PRD_IDX 4526

Figure 5.2: Buffer cache content by object with multiple buffer pools

Another dramatic effect was the reduction in physical reads for index objects.
Data from Figures 3.1 and 3.2 show that with a default buffer pool, the
2,204,588 physical disk reads for index objects accounted for roughly 25% of
the total. With a KEEP buffer pool the total physical reads for index objects
was 1,056,471, as shown in Figure 5.3, representing only 12% of the total
reads - a 52% improvement in buffering index blocks.

TABLESPACE_NAME READS
------------------------------ ----------
WAREHOUSE 3180670
CUSTOMER 2145999
ITEM 1404929
ITM_IDX 667863
ORDERS 318160
ROLL_1 182327
ROLL_2 180950
NAME_IDX 166831
ORD_IDX 131900
PRODUCT 80686
WHR_IDX 68408
CUS_IDX 21469

Figure 5.3: Physical reads per database object with multiple buffer pools

Additional performance gains were realized by assigning the PRODUCT table
to the KEEP buffer pool. Figure 3.2 shows that in the default buffer cache case

 14

112,353 disk read operations occurred for the PRODUCT table. That figure
was reduced by roughly 28% down to 80,686 reads.

Using multiple buffer pools usually results in wide variation in physical reads
for at least certain tables or indexes. In the case of this performance study, the
tradeoff was increased physical reads on the WAREHOUSE and CUSTOMER
tables for the sake of better cache efficiency. While the sum of physical disk
reads for WAREHOUSE and CUSTOMER increased 13% from the default
buffer cache case as seen in Figure 5.4, the total physical reads actually
decreased by approximately 2.5% as seen in Figures 3.1 and 5.1.

Figure 5.4: Comparison of CUSTOMER and WAREHOUSE reads

Performance Summary with Multiple Buffer Pools
The improved cache efficiency, due to utilizing multiple buffer pools, resulted
in a performance increase of 11% for a transaction per second rate of 952.
The average response time improved by 13% - down to .096 seconds.

Summary
With multiple buffer pool support in Oracle9i, traditional performance tuning
methodology is not always sufficient. As demonstrated with the performance
study in this whitepaper, additional performance is possible even after reports
of extremely high cache-hit ratios - provided there is remaining system
bandwidth.

0

1000

2000

3000

4000

5000

6000

DEFAULT MULTIPLE POOLS

CUSTOMER

WAREHOUSE

