Re: Use merge-based matching for MCVs in eqjoinsel - Mailing list pgsql-hackers

From Ilia Evdokimov
Subject Re: Use merge-based matching for MCVs in eqjoinsel
Date
Msg-id 538f79b9-3c9d-459c-9548-fac56c7e2ec7@tantorlabs.com
Whole thread Raw
In response to Re: Use merge-based matching for MCVs in eqjoinsel  (David Geier <geidav.pg@gmail.com>)
Responses Re: Use merge-based matching for MCVs in eqjoinsel
Re: Use merge-based matching for MCVs in eqjoinsel
List pgsql-hackers
On 08.09.2025 13:08, David Geier wrote:
> Hi Ilia!
>
> On 05.09.2025 16:03, David Geier wrote:
>>>> I propose an optimization: when the column datatype supports
>>>> ordering(i.e., has < and >), we can sort both MCV lists and apply
>>>> mege-style algorithm to detect matches. This reduces runtime from
>>>> O(N^2) to O(NlogN), where N is the number of MCV entries. The patch
>>>> also applies the same optimization to semi-join clauses, which show
>>>> similar performance behavior.
>> Why do you sort both lists and then merge instead of putting the smaller
>> list into a hash map and then doing hash lookups (if the type is hashable)?
> I've tested your and my code with the following script:
>
> CREATE TABLE foo(col TEXT);
> CREATE TABLE bar(col TEXT);
> SET default_statistics_target = 10000;
>
> -- Generate MCV values. PostgreSQL doesn't store MCVs if the table has
> -- only a single value or every value has exactly the same cardinality.
> DO $$
> BEGIN
>    FOR i IN 1..10000 LOOP
>      FOR j IN 1..least(i, 50) LOOP
>        INSERT INTO foo VALUES ('aaaaaaaaaaaaaaaaaaaa' || i::TEXT);
>        INSERT INTO bar VALUES ('aaaaaaaaaaaaaaaaaaaa' || (i + 100000)::TEXT);
>      END LOOP;
>    END LOOP;
> END;
> $$;
>
> ANALYZE foo, bar;
> \timing on
> EXPLAIN SELECT * FROM foo f, bar b WHERE f.col = b.col;
>
> Results are:
>
> - master: 433 ms
> - Order+Merge: 11 ms
> - Hash map: 4 ms
>
> I've attached my draft patch.
>
> --
> David Geier


Hi David,

Thank you for reviewing.

I have read all the previous messages - and yes, you are right. I don’t
know why I didn’t consider using a hash table approach initially. Your
idea makes a lot of sense.

To evaluate it, I ran benchmarks on JOB with three variants:

$ ./benchmark.sh master
$ ./benchmark.sh merge
$ ./benchmark.sh hash

I compared total planning time across all 113 queries.

$ python3 planning_time.py master hash
default_statistics_target | Planner Speedup (×) | Planner Before (ms) |
Planner After (ms)
--------------------------------------------------------------------------------
100                       | 1.00                | 1892.627            |
1886.969
1000                      | 1.09                | 2286.922            |
2100.099
2500                      | 1.94                | 4647.167            |
2400.711
5000                      | 6.15                | 17964.779           |
2919.914
7500                      | 10.58               | 38622.443           |
3650.375
10000                     | 16.33               | 69538.085           |
4257.864

$ python3 planning_time.py master merge
default_statistics_target | Planner Speedup (×) | Planner Before (ms) |
Planner After (ms)
--------------------------------------------------------------------------------
100                       | 1.00                | 1892.627            |
1898.622
1000                      | 1.12                | 2286.922            |
2033.553
2500                      | 1.92                | 4647.167            |
2423.552
5000                      | 5.94                | 17964.779           |
3025.739
7500                      | 10.48               | 38622.443           |
3684.262
10000                     | 16.72               | 69538.085           |
4159.418

Based on these results, I’d prefer the hash lookup implementation, so I
think it makes sense to improve your patch further and bring it into
good shape. Shall I take care of that, or would you prefer to do it
yourself?

--
Best regards,
Ilia Evdokimov,
Tantor Labs LLC,
https://tantorlabs.com

Attachment

pgsql-hackers by date:

Previous
From: Adrien Nayrat
Date:
Subject: Re: Query Performance Degradation Due to Partition Scan Order – PostgreSQL v17.6
Next
From: jian he
Date:
Subject: Re: NOT NULL NOT ENFORCED