Re: Query Performance Degradation Due to Partition Scan Order – PostgreSQL v17.6 - Mailing list pgsql-hackers
From | Vivek Gadge |
---|---|
Subject | Re: Query Performance Degradation Due to Partition Scan Order – PostgreSQL v17.6 |
Date | |
Msg-id | CAK+uD7g=AzsedqVo2Q2ZvLs0KR6Xcqj1=_HJxjDLobY7UZ8P_A@mail.gmail.com Whole thread Raw |
In response to | Re: Query Performance Degradation Due to Partition Scan Order – PostgreSQL v17.6 (Ashutosh Bapat <ashutosh.bapat.oss@gmail.com>) |
Responses |
Re: Query Performance Degradation Due to Partition Scan Order – PostgreSQL v17.6
|
List | pgsql-hackers |
Hi Ashutosh,
Thank you for your feedback regarding this matter.
To provide more context, here is the exact query I am running:
EXPLAIN ANALYZE VERBOSE
SELECT m.txn_date, d.bank_ref
FROM app.main m
JOIN app.detail d ON m.txn_id = d.main_txn_id
WHERE m.txn_id = 9999999999999999999;
Both app.main and app.detail are range partitioned by month (e.g., main_202502, detail_202502, etc.) on a date column,
Attached below is the EXPLAIN ANALYZE VERBOSE output for the query. It shows that PostgreSQL is scanning all partitions in ascending order, even though the matching record is present in the main_202509 partition.
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------
Nested Loop (cost=1.00..46.19 rows=156 width=346) (actual time=17.656..18.173 rows=1 loops=1)
Output: m.txn_date, d.bank_ref, m.processor_id, m.txn_code, m.pos_data, d.issuer_txn_id, m.trans_ref, d.processor_uid, m.sub_txn_type, d.processor_token
-> Append (cost=0.43..22.05 rows=13 width=238) (actual time=8.749..9.027 rows=1 loops=1)
-> Index Scan using detail_202502_main_txn_id_key on app.detail_202502 d_1 (cost=0.43..2.65 rows=1 width=74) (actual time=1.634..1.634 rows=0 loops=1)
Output: d_1.bank_ref, d_1.issuer_txn_id, d_1.processor_uid, d_1.processor_token, d_1.main_txn_id
Index Cond: (d_1.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202503_main_txn_id_key on app.detail_202503 d_2 (cost=0.56..2.78 rows=1 width=74) (actual time=1.158..1.158 rows=0 loops=1)
Output: d_2.bank_ref, d_2.issuer_txn_id, d_2.processor_uid, d_2.processor_token, d_2.main_txn_id
Index Cond: (d_2.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202504_main_txn_id_key on app.detail_202504 d_3 (cost=0.56..2.78 rows=1 width=74) (actual time=1.105..1.106 rows=0 loops=1)
Output: d_3.bank_ref, d_3.issuer_txn_id, d_3.processor_uid, d_3.processor_token, d_3.main_txn_id
Index Cond: (d_3.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202505_main_txn_id_key on app.detail_202505 d_4 (cost=0.56..2.78 rows=1 width=73) (actual time=1.097..1.097 rows=0 loops=1)
Output: d_4.bank_ref, d_4.issuer_txn_id, d_4.processor_uid, d_4.processor_token, d_4.main_txn_id
Index Cond: (d_4.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202506_main_txn_id_key on app.detail_202506 d_5 (cost=0.56..2.78 rows=1 width=74) (actual time=1.002..1.002 rows=0 loops=1)
Output: d_5.bank_ref, d_5.issuer_txn_id, d_5.processor_uid, d_5.processor_token, d_5.main_txn_id
Index Cond: (d_5.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202507_main_txn_id_key on app.detail_202507 d_6 (cost=0.56..2.78 rows=1 width=74) (actual time=0.913..0.913 rows=0 loops=1)
Output: d_6.bank_ref, d_6.issuer_txn_id, d_6.processor_uid, d_6.processor_token, d_6.main_txn_id
Index Cond: (d_6.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202508_main_txn_id_key on app.detail_202508 d_7 (cost=0.56..2.78 rows=1 width=73) (actual time=0.833..0.833 rows=0 loops=1)
Output: d_7.bank_ref, d_7.issuer_txn_id, d_7.processor_uid, d_7.processor_token, d_7.main_txn_id
Index Cond: (d_7.main_txn_id = '9999999999999999999'::bigint)
-> Index Scan using detail_202509_main_txn_id_key on app.detail_202509 d_8 (cost=0.43..2.65 rows=1 width=74) (actual time=1.001..1.004 rows=1 loops=1)
Output: d_8.bank_ref, d_8.issuer_txn_id, d_8.processor_uid, d_8.processor_token, d_8.main_txn_id
Index Cond: (d_8.main_txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.detail_202510 d_9 (cost=0.00..0.00 rows=1 width=500) (actual time=0.041..0.042 rows=0 loops=1)
Output: d_9.bank_ref, d_9.issuer_txn_id, d_9.processor_uid, d_9.processor_token, d_9.main_txn_id
Filter: (d_9.main_txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.detail_202511 d_10 (cost=0.00..0.00 rows=1 width=500) (actual time=0.065..0.066 rows=0 loops=1)
Output: d_10.bank_ref, d_10.issuer_txn_id, d_10.processor_uid, d_10.processor_token, d_10.main_txn_id
Filter: (d_10.main_txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.detail_202512 d_11 (cost=0.00..0.00 rows=1 width=500) (actual time=0.085..0.085 rows=0 loops=1)
Output: d_11.bank_ref, d_11.issuer_txn_id, d_11.processor_uid, d_11.processor_token, d_11.main_txn_id
Filter: (d_11.main_txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.detail_202601 d_12 (cost=0.00..0.00 rows=1 width=500) (actual time=0.039..0.039 rows=0 loops=1)
Output: d_12.bank_ref, d_12.issuer_txn_id, d_12.processor_uid, d_12.processor_token, d_12.main_txn_id
Filter: (d_12.main_txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.detail_default d_13 (cost=0.00..0.00 rows=1 width=500) (actual time=0.037..0.037 rows=0 loops=1)
Output: d_13.bank_ref, d_13.issuer_txn_id, d_13.processor_uid, d_13.processor_token, d_13.main_txn_id
Filter: (d_13.main_txn_id = '9999999999999999999'::bigint)
-> Materialize (cost=0.56..22.23 rows=12 width=125) (actual time=8.901..9.137 rows=1 loops=1)
Output: m.txn_date, m.processor_id, m.txn_code, m.pos_data, m.trans_ref, m.sub_txn_type, m.txn_id
-> Append (cost=0.56..22.17 rows=12 width=125) (actual time=8.892..9.127 rows=1 loops=1)
-> Index Scan using main_202502_pkey on app.main_202502 m_1 (cost=0.56..2.78 rows=1 width=36) (actual time=0.897..0.897 rows=0 loops=1)
Output: m_1.txn_date, m_1.processor_id, m_1.txn_code, m_1.pos_data, m_1.trans_ref, m_1.sub_txn_type, m_1.txn_id
Index Cond: (m_1.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202503_pkey on app.main_202503 m_2 (cost=0.56..2.78 rows=1 width=37) (actual time=1.105..1.105 rows=0 loops=1)
Output: m_2.txn_date, m_2.processor_id, m_2.txn_code, m_2.pos_data, m_2.trans_ref, m_2.sub_txn_type, m_2.txn_id
Index Cond: (m_2.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202504_pkey on app.main_202504 m_3 (cost=0.56..2.78 rows=1 width=37) (actual time=1.114..1.114 rows=0 loops=1)
Output: m_3.txn_date, m_3.processor_id, m_3.txn_code, m_3.pos_data, m_3.trans_ref, m_3.sub_txn_type, m_3.txn_id
Index Cond: (m_3.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202505_pkey on app.main_202505 m_4 (cost=0.56..2.78 rows=1 width=37) (actual time=1.135..1.135 rows=0 loops=1)
Output: m_4.txn_date, m_4.processor_id, m_4.txn_code, m_4.pos_data, m_4.trans_ref, m_4.sub_txn_type, m_4.txn_id
Index Cond: (m_4.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202506_pkey on app.main_202506 m_5 (cost=0.56..2.78 rows=1 width=38) (actual time=1.096..1.096 rows=0 loops=1)
Output: m_5.txn_date, m_5.processor_id, m_5.txn_code, m_5.pos_data, m_5.trans_ref, m_5.sub_txn_type, m_5.txn_id
Index Cond: (m_5.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202507_pkey on app.main_202507 m_6 (cost=0.56..2.78 rows=1 width=38) (actual time=1.285..1.285 rows=0 loops=1)
Output: m_6.txn_date, m_6.processor_id, m_6.txn_code, m_6.pos_data, m_6.trans_ref, m_6.sub_txn_type, m_6.txn_id
Index Cond: (m_6.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202508_pkey on app.main_202508 m_7 (cost=0.56..2.78 rows=1 width=38) (actual time=1.010..1.010 rows=0 loops=1)
Output: m_7.txn_date, m_7.processor_id, m_7.txn_code, m_7.pos_data, m_7.trans_ref, m_7.sub_txn_type, m_7.txn_id
Index Cond: (m_7.txn_id = '9999999999999999999'::bigint)
-> Index Scan using main_202509_pkey on app.main_202509 m_8 (cost=0.43..2.65 rows=1 width=37) (actual time=1.243..1.245 rows=1 loops=1)
Output: m_8.txn_date, m_8.processor_id, m_8.txn_code, m_8.pos_data, m_8.trans_ref, m_8.sub_txn_type, m_8.txn_id
Index Cond: (m_8.txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.main_202510 m_9 (cost=0.00..0.00 rows=1 width=300) (actual time=0.057..0.057 rows=0 loops=1)
Output: m_9.txn_date, m_9.processor_id, m_9.txn_code, m_9.pos_data, m_9.trans_ref, m_9.sub_txn_type, m_9.txn_id
Filter: (m_9.txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.main_202511 m_10 (cost=0.00..0.00 rows=1 width=300) (actual time=0.045..0.045 rows=0 loops=1)
Output: m_10.txn_date, m_10.processor_id, m_10.txn_code, m_10.pos_data, m_10.trans_ref, m_10.sub_txn_type, m_10.txn_id
Filter: (m_10.txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.main_202512 m_11 (cost=0.00..0.00 rows=1 width=300) (actual time=0.076..0.076 rows=0 loops=1)
Output: m_11.txn_date, m_11.processor_id, m_11.txn_code, m_11.pos_data, m_11.trans_ref, m_11.sub_txn_type, m_11.txn_id
Filter: (m_11.txn_id = '9999999999999999999'::bigint)
-> Seq Scan on app.main_default m_12 (cost=0.00..0.00 rows=1 width=300) (actual time=0.047..0.047 rows=0 loops=1)
Output: m_12.txn_date, m_12.processor_id, m_12.txn_code, m_12.pos_data, m_12.trans_ref, m_12.sub_txn_type, m_12.txn_id
Filter: (m_12.txn_id = '9999999999999999999'::bigint)
On Tue, 9 Sept, 2025, 8:42 am Ashutosh Bapat, <ashutosh.bapat.oss@gmail.com> wrote:
On Mon, Sep 8, 2025 at 5:09 PM Vivek Gadge <vvkgadge56@gmail.com> wrote:
>
>
> For example, when a query runs on a partitioned table, PostgreSQL scans partitions in the order they were created or attached to the parent table. In our case (monthly partitions from January through September), this means that queries looking for recent data (e.g., September) may experience additional overhead. PostgreSQL evaluates the older partitions first, checking their constraints and in some cases probing their indexes, before reaching the later partitions that actually contain the needed data.
>
> As a result, while the query results are correct, the execution time increases due to unnecessary work on irrelevant partitions. This performance impact is more noticeable when the target partition is at the end of the scan order and pruning cannot fully eliminate the earlier partitions.
>
If you don't want data from certain partitions maybe you should add a
clause that will help partition pruning. If you need data from all
partitions, the order in which they are scanned doesn't matter, those
will be scanned either way.
If partitioning pruning isn't working for you, please report the exact
query. Please provide example queries anyway.
--
Best Wishes,
Ashutosh Bapat
pgsql-hackers by date: