Understood, a great example what is possible if the toolset is open ;-)
Mit freundlichen Grüßen
Stefan Sonnenberg-Carstens
Teamleiter Softwareentwicklung WECO / DevOps Engineer
B.Sc. Wirtschaftsinformatik

OPHARDT HYGIENE-TECHNIK GmbH + Co. KG
Lindenau 27
D - 47661 Issum
Tel: +49 2835 18-492
Fax: +49 2835 18-28492
Mail: ssonnenberg@ophardt.com
www.OPHARDT.com
Handelsregistereintrag beim Amtsgericht Kleve:
Kommanditgesellschaft HRA 1681, Komplementärin:
OPHARDT HYGIENE-TECHNIK VerwaltungsGmbH HRB 3910
Geschäftsführer: Thomas Houcken
USt.-Identifikations-Nr.: DE813067257
CONFIDENTIALITY NOTICE:
This e-mail communication and any attachments may contain confidential and privileged information for the use
of the designated recipients named above. Any unauthorized review, use, disclosure or distribution is prohibited.
If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies
of the original message.
Von: Mark Teper [mailto:mark.teper@gmail.com]
Gesendet: Montag, 6. Mai 2019 11:33
An: Sonnenberg-Carstens, Stefan; pgsql-sql@lists.postgresql.org
Betreff: Re: plpython transforms vs. arrays
Hi Stefan,
> is the Python code running inside the PostgreSQL instance?
Yes, it is using the PL Python language so it runs in the PostgreSQL instance. With some help from Tom, I've been able to make the change needed to allow this transform.
I need to do some more testing, but my preliminary results for the arrays I'm interested in show transforming Postgres to Numpy is about 5x faster and transforming Numpy back to Postgres about 2x faster.